Курсовая работа: Методи розв’язування раціональних нерівностей вищих степенів
4. Виключити з розкладення нелінійні множники. Це виключення виконується таким чином.
Якщо в розкладенні є множник, , де , то його виключення залежить від знака старшого коефіцієнта і виконується за правилом:
Якщо в розкладенні є множник , то його виключення здійснюється за правилами
Нелінійний множник виключається за правилом:
.
5. На числовій осі відмітимо точки, в яких обертаються в нуль всі множники, що стоять в чисельнику і знаменнику лівої частини нерівності, отриманої в результаті виконання пунктів «1» - «4». При цьому, якщо нерівність нестрога, точки, які відповідають множникам чисельника будемо визначати зафарбованими кружками, а точки, що відповідають множникам знаменника світлими. Якщо нерівність строга, всі точки відмічаються світлими кружками.
6. Поставити знаки в кожному проміжку, на якій числова вісь розбивається відміченими точками.
Спочатку поставити знак у самому правому проміжку на числовій осі за правилом: знак «+» ставиться, якщо число множників виду парне, і знак «-», якщо це число непарне. Знаки в інших проміжках ставляться з урахуванням того, що вони чергуються в сусідніх проміжках.
7. Вибираються проміжки, в яких стоїть знак «+», якщо нерівність, отримана в пункті 4 має вигляд: , або «-», якщо ця нерівність має вигляд . Ці проміжки містять у собі крайні точки, відмічені на числовій осі зафарбованими кружками, і не містять точок, відмічених світлими кружками,. Об’єднання цих проміжків і є множиною розв’язків даної нерівності.[4:124]
Приклад 1. Розв’язати методом інтервалів нерівність
. (1)
Розв’язування:З нерівності знаходимо ОДЗ:
Далі замість нерівності (1) розв’язуємо рівняння
або звідки
Наносимо відповідні точки на числову вісь (див. рисунок).
Розглядаємо кожний з утворених інтервалів окремо.
1. Підставляємо значення з інтервалу у нерівність (1). Дістаємо нерівність , яка не виконується. Тому нерівність (1) не виконується в усіх точках інтервалу .
2. Підставляючи в нерівність (1) значення з інтервалу , дістаємо правильну нерівність . Отже, нерівність (1) виконується на інтервалі .
3. Підставляючи в (3) значення з інтервалу дістаємо неправильну нерівність . Це означає, що нерівність (1) не виконується ні в одній точці інтервалу .
Остаточно маємо розв’язок нерівності (1)
Відповідь.[1:161]
Приклад 2. Розв’язати нерівність
Розв’язування: Для знаходження коренів рівняння необхідно розкласти його на множники. Отже