Курсовая работа: Обработка статистической информации при определении показателей надежности
Из уравнений 1.12 и 1.15 получим:
. (1.16)
где - значение конца i-го интервала статистического ряда.
Из уравнения 1.15 следует,
(1.17)
При обработке опытной информации установлено:
- средний ресурс =6,49 мм;
- среднее квадратическое отклонение σ = 0,24 мм;
- коэффициент вариации V = 0,42.
Для построения дифференциальной кривой f(t) определяется теоретическая вероятность попадания случайной величины в каждом интервале статистического ряда (таблица 1.2).
Так, вероятность того, что деталь потребует ремонта в первом и втором интервале наработок будет равна:
и т.д. для остальных интервалов.
Результаты расчетов представлены в таблице 1.3.
Для построения интегральной кривой определяются значения функции F(t) для концов интервалов статистического ряда.
Для первого интервала получим:
;
.
Дальнейшие результаты расчетов представлены в таблице 1.3.
Таблица 1.3 – Значения f(t) и F(t) при ЗНР
Интервалы, мм | 6,00-6,16 | 6,16-6,32 | 6,32-6,48 | 6,48-6,64 | 6,64-6,80 | 6,80-6,96 |
f(t) | 0,061 | 0,153 | 0,245 | 0,243 | 0,166 | 0,071 |
F(t) | 0,085 | 0,239 | 0,484 | 0,732 | 0,902 | 0,975 |
Закон распределения Вейбулла (ЗРВ)
Отличительной особенностью закона распределения Вейбулла является правосторонняя асимметрия дифференциальной функции.
Дифференциальная f(t) и интегральная F(t) функции определяются уравнениями:
(1.18)
(1.19)
где а и в – параметры распределения Вейбулла.
Определение параметров "а" и "в" аналитическим путем довольно трудоемко, поэтому на практике при их определении пользуются специальными таблицами.
Порядок определения дифференциальной и интегральной функций при ЗРВ следующий: