Курсовая работа: Обработка статистической информации при определении показателей надежности
mi – опытная частота в i-ом интервале;
mтi – теоретическая частота в i-ом интервале.
(1.24)
Для определения критерия согласия χ2 нужно иметь статистический ряд, который удовлетворяет условиям:
. (1.25)
В случае, если статистический ряд не удовлетворяет этим условиям, проводится укрупнение его путем объединения интервалов с частотой mi или mтi меньше 5 с соседними.
Для данного задания значение теоретической частоты (mтi) для каждого интервала статистического ряда, определенное по формуле 1.24 для ЗНР и ЗРВ представлено в таблице 1.5.
Таблица 1.5 – Значение теоретической частоты для ЗНР и ЗРВ
Интервалы, мм | 6,00-6,16 | 6,16-6,32 | 6,32-6,48 | 6,48-6,64 | 6,64-6,80 | 6,80-6,96 | |
Опытная частота mi | 3 | 5 | 6 | 7 | 6 | 3 | |
F (t) | ЗНР | 0,085 | 0,239 | 0,484 | 0,732 | 0,902 | 0,975 |
ЗРВ | 0,096 | 0,243 | 0,536 | 0,719 | 0,902 | 0,969 | |
Теоретическая частота, mтi | ЗНР | 2,55 | 4,62 | 7,35 | 7,44 | 5,1 | 2,19 |
ЗРВ | 2,88 | 4,41 | 8,79 | 5,49 | 5,49 | 2,01 |
Так как при выравнивании по ЗНР статистический ряд не удовлетворяет условию 1.25, производим укрупнение статистического ряда, т.е. объединяем первый и второй, а также пятый и шестой интервалы. Укрупненный статистический ряд представлен в таблице 1.6.
Таблица 1.6 – Укрупненный статистический ряд для определения критерия согласия χ2
Интервалы, мм | 6,00-6,32 | 6,32-6,48 | 6,48-6,64 | 6,64-6,96 | |
Опытная частота, mi | 8 | 6 | 7 | 9 | |
Теоретическая частота, mтi | ЗНР | 7,17 | 7,35 | 7,44 | 7,29 |
ЗРВ | 7,29 | 8,79 | 5,49 | 7,5 |
Критерий χ2 будет соответственно равен:
- для закона нормального закона
.
- для закона распределения Вейбулла
.
Для количественной оценки совпадения опытного и теоретического распределения определяется вероятность совпадения по критерию Пирсона Р(χ2), определяемая по таблицам в литературных источниках.
Вероятность совпадения при прочих равных условиях зависит также от повторности исследуемой информации. Для пользования таблицей необходимо определить число степеней свободы "r" по уравнению:
(1.26)
где ny – число интервалов укрупненного статистического ряда;
к – число параметров теоретического закона распределения;
1 – связь, накладываемая закономерностью ∑Pi=1.
Для данного примера
Тогда для закона нормального распределения Р(χ2) = 40%, для закона распределения Вейбулла Р(χ2) = 20%.
Принято считать, что теоретический закон согласуется с опытным распределением, если Р(χ2)≥10%.
Из проведенной проверки следует, что оба теоретические закона согласуются с опытным распределением, но вероятность совпадения закона нормального распределения несколько выше, чем закон распределения Вейбулла.
1.8 Определение доверительных границ рассеивания одиночного и среднего значений показателя надежности. Абсолютная и относительная предельные ошибки
Доверительные границы рассеивания показателей надежности при использовании закона нормального распределения определяется по формулам:
а) для одиночного значения показателя надежности
; (1.27)