Курсовая работа: Предел последовательности. Теорема Штольца

Числовая последовательность задана общим членом xп, рассмотрим его:

при нахождении такого предела говорят, что будем раскрывать неопределённость вида .

при нахождении такого предела, говорят, что будем раскрывать неопределенность вида .

Для раскрытия неопределённости доделим числитель и знаменатель на наибольшую степень n.

Таким образом, имеет место правило:

Предел отношения двух многочленов равен бесконечности, если степень числителя больше степени знаменателя, нулю, если степень числителя меньше степени знаменателя и отношению коэффициентов при старших членах, если степени числителя и знаменателя равны.

Для упрощения задачи нахождения предела последовательности, вышеуказанного вида, мы прибегаем к помощи теоремы Штольца.

Теорема Штольца

Для определения пределов неопределённых выражений типа часто бывает полезна следующая теорема, принадлежащая Штольцу (O. Stolz).

Теорема: Пусть варианта , причём – хотя бы начиная с некоторого места – с возрастанием п и уп возрастает: т.е. уп+1 > yn . Тогда

если только существует предел справа (конечный или даже бесконечный).

Доказательство: Допустим сначала, что этот предел равен конечному числу L:

Тогда по любому заданному найдется такой номер N, что для n > N будет

или

.

Значит, какое бы n > N ни взять, все дроби

К-во Просмотров: 589
Бесплатно скачать Курсовая работа: Предел последовательности. Теорема Штольца