Курсовая работа: Предел последовательности. Теорема Штольца
так же и в нашей задаче, положив а = 1+λ, так что λ > 0, имеем по формуле Бинома Ньютона
.
Так как для n > 2, очевидно,, то окончательно,
При k = 1, получаем сразу
так что
Так как этот результат верен при любом а > 1, то, взяв k > 1, можем утверждать (по крайней мере, для достаточно больших n)
так что
(а > 1).
Доказанный, таким образом, для k = 1, этот результат тем долее будет верен и для k < 1.
Этот результат с помощью теоремы Штольца получается сразу
2. Применим теорему Штольца к доказательству следующего интересного предложения (Коши):
Если варианта ап имеет предел (конечный или бесконечный), то тот же предел имеет и варианта
(«среднее арифметическое» первых п значений варианты ап ).
Действительно, полагая по теореме Штольца
имеем:
Например, если мы знаем, что , то и
3. Рассмотрим теперь варианту (считая к – натуральным)
,
которая представляет неопределённость вида .
Полагая в теореме Штольца