Курсовая работа: Предел последовательности. Теорема Штольца
числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при n > N
запишем тождество
откуда
.
Второе слагаемое справа, как мы видели выше, при n > N становится < .
Первое же слагаемое, ввиду того, что, также будет < , скажем, для n > N’ . Если при этом взять N’ > N, то для n > N’ очевидно
,
что и доказывает наше утверждение.
Случай бесконечного предела приводится к выше рассмотренному. Пусть, например,
Отсюда, прежде всего, вытекает, что (для достаточно больших n)
следовательно, вместе с уn и , причем варианта хп возрастает с возрастанием номера п. В таком случае, доказанную теорему можно применить к обратному отношению :
(ибо здесь предел уже конечен), откуда и следует, что
,
что и требовалось доказать.
Рассмотрим несколько примеров на применение данной теоремы
1. Вычислить
Установим одно вспомогательное неравенство (неравенство Як. Бернулли):
если п – натуральное число, большее единицы, и γ>1, то
(*)
Действительно, положив γ =1+λ, где λ > 0, по формуле Бинома Ньютона будем иметь:
так как ненаписанные члены положительны, то
,