Курсовая работа: Решение обратной задачи динамики
Однако, как показано в работах А.А. Красовского и А.А. Фельдбаума, оптимальность системы по интегральному квадратичному критерию равносильна тому, что ошибка системы как функция времени подчиняется в процессе управления соответствующему дифференциальному уравнению.
Действительно. Пусть состояние системы характеризуется выходной переменной x (t ) и ее производными ). Предполагается, что порядок системы равен n . Пусть в начальный момент
, ,..., (1.1)
Принимается, что собственное движение системы асимптотически устойчиво. Тогда при система стремится к положению равновесия:
(1.14)
Рассмотрим оценку и найдем такую функцию x (t ), которая удовлетворяет граничным условиям (1.1), (1.2) и доставляет минимум интегралу . Обозначим через подынтегральное выражение в . Тогда согласно теории вариационного исчисления необходимое условие экстремума (минимума) интеграла будет иметь вид
(1.3)
Это дифференциальное уравнение называется уравнением Эйлера-Пуассона. С учетом выражения для можно найти
и, кроме того,
Следовательно, уравнение (1.3) будет
(1.4)
Таким образом, экстремаль x (t ), на которой интеграл обращается в минимум, является решением дифференциального уравнения (1.4) порядка 2n . При этом x (t ) должна удовлетворять граничным условиям (1.1) и (1.2). Характеристическое уравнение, отвечающее (1.16), таково:
Оно обладает тем свойством, что его корни попарно симметричны относительно начала координат комплексной плоскости p , т.е. корням , соответствуют корни, . На этом основании решение (1.4) можно записать в виде
(1.5)
где постоянные , должны быть такими, чтобы выполнялись граничные условия.
Пусть для определенности корни таковы, что
, ,
В этом случае постоянные в (1.5) должны быть равными нулю в силу того, что согласно (1.2) при функция и ее производные стремятся к нулю. Таким образом, выражение для экстремали должно быть
. (1.6)
Однако известно, что , определяемая формулой (1.6), есть решение одного дифференциального уравнения n -го порядка
(1.7)
Коэффициенты этого уравнения однозначно выражаются через корни по формулам Виета.
Отметим, что начальными условиями для уравнения (1.7) являются (1.1).
Из приведенного анализа следует, что экстремаль интеграла при граничных условиях (1.1), (1.2) является решением однородного дифференциального уравнения (1.7), порядок которого равен порядку оптимизируемой системы. На этом основании можно заключить, что параметрическая оптимизация системы по критерию минимума интегральной квадратичной оценки выполняется из условия, чтобы выходная переменная x (t ) системы в свободном движении изменялась во времени по предписанному закону, определяемому дифференциальным уравнением (1.7). Это в свою очередь означает, что задачу параметрической оптимизации можно рассматривать как обратную задачу динамики, формулируемую следующим образом: динамическая система заданной структуры имеет варьируемые параметры ; требуется найти такие значения этих параметров, при которых движение системы проходит по предписанной траектории, определяемой дифференциальным уравнением вида (1.7).
Практически не всегда оказывается возможным провести параметрический синтез системы из условия, чтобы ее выходная переменная x (t ) в точности была равна переменной , которая является экстремалью минимизируемого функционала . В большинстве случаях параметры ищутся из условия наилучшего (в каком-либо смысле) приближения x (t ) и . Очень часто в качестве меры приближения используют определенные интегралы: