Курсовая работа: Решения задач линейного программирования геометрическим методом
Чтобы учесть оставшиеся ограничения, проще всего заменить неравенства на равенства, в результате чего получится система уравнений прямых:
3х1 + х2 = 75;
х1 + х2 = 30;
х1 +4х2 = 84.
а затем на плоскости провести эти прямые.
Например, неравенство 3х1 + х2 ≤ 75 заменяется уравнением прямой 3х1 + х2 = 75. Чтобы провести эту линию, надо найти две различные точки, лежащие на этой прямой Можно положить х1 = 0, тогда х2 = 75/1 = 75.. Аналогично для х2 = 0 находим x1 = 75/3 = 25. Итак, наша прямая проходит через две точки (0, 75) и (25;0). Аналогично найдём остальные точки и запишем их в таблицу 1.2..
Таблица 1.2.
3х1 +х2 ≤ 75; | х1 +х2 ≤ 30; | х1 +4х2 ≤ 84. | |||
х1 | х2 | х1 | х2 | х1 | х2 |
0 | 75 | 0 | 30 | 0 | 21 |
25 | 0 | 30 | 0 | 84 | 0 |
Согласно данной таблицы, построим график в программе Excel.
Заштрихованная область, изображённая на рисунке, является областью допустимых значений функции F. Т.к. целевая функция F стремиться к max, то идя по направлению вектора n, получим точку B с оптимальным решением. Для определения ее координаты возьмем две прямые, на пересечении которых она образуется:
3х1 + х2 ≤ 75, х1 = 19,64,
х1 + 4х2 ≤ 84, х2 = 16,09. , т. е. B(16,09; 19,64)
максимальное значение линейной функции равно :
Fmax = 30*16,09 + 40*19,64 = 1232,80.
Итак, Fmax = 1232,80 при оптимальном решении х1 = 16,09, х2 = 19,64, т. е. максимальная прибыль в 1232,80 ден. ед. может быть достигнута при производстве 16,09 единиц продукции А и 19,64 единиц продукции В.
Ответ: Fmax = 1232,80.
Задача № 2
Для изготовления двух видов продукции Р1 и Р2 используют три вида сырья: S1 , S2 , S3 . Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукции, а также величина прибыли, получаемая от реализации единицы продукции, приведены в таблице 2.1.
Таблица 2.1.
Вид сырья | Запас сырья | Количество единиц сырья, идущих на изготовление единицы продукции | |
Р1 | Р2 | ||
S1 | 20 | 2 | 5 |
S2 | 40 | 8 | 5 |
S3 | 30 | 5 | 6 |
Прибыль от единицы продукции, руб. | 50 | 40 |
Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.
Решение.
Обозначим через х1 количество единиц продукции Р1 , а через х2 – количество единиц продукции Р2 . Тогда, учитывая количество единиц сырья, расходуемое на изготовление продукции, а так же запасы сырья, получим систему ограничений:
2х1 + 5х2 ≤ 20
8х1 + 5х2 ≤ 40
5х1 + 6х2 ≤ 30
которая показывает, что количество сырья, расходуемое на изготовление продукции, не может превысит имеющихся запасов. Если продукция Р1 не выпускается, то х1 =0; в противном случае x1 = 0. То же самое получаем и для продукции Р2 . Таким образом, на неизвестные х1 и х2 должно быть наложено ограничение неотрицательности: х1 ≥ 0, х2 ≥ 0.
Конечную цель решаемой задачи – получение максимальной прибыли при реализации продукции – выразим как функцию двух переменных х1 и х2 . Реализация х1 единиц продукции Р1 и х2 единиц продукции Р2 дает соответственно 50х1 и 40х2 руб. прибыли, суммарная прибыль Z = 50х1 + 40х2 (руб.)
Условиями не оговорена неделимость единица продукции, поэтому х1 и х2 (план выпуска продукции) могут быть и дробными числами.
Требуется найти такие х1 и х2 , при которых функция Z достинает максимум, т.е. найти максимальное значение линейной функции Z = 50х1 + 40х2 при ограничениях
2х1 + 5х2 ≤ 20