Курсовая работа: Решения задач линейного программирования геометрическим методом

Выделенная область, изображённая на рисунке, является областью допустимых значений функции F. Точка В - оптимальное решение. Для определения ее координаты возьмем две прямые, на пересечении которых она образуется:

x1 + 2x2 = 9, x1 = 7,50,

x1 + 6x2 = 12, x2 = 0,75.

Минимальное значение линейной функции равно :

Fmin = 4*7.5 + 6*0.75 = 34.50.

Итак, Fmin = 34.50 при оптимальном решении х1 = 7.50, х2 = 0.75.

Ответ: Fmin = 34,50.

Задача № 4

Трикотажная фабрика использует для производства свитеров и кофточек шерсть, силикон и нитрон, запасы которых составляют 820, 430 и 310 кг. Количество пряжи каждого вида (в кг), необходимой для изготовления одного изделия, а также прибыль, получаемая от их реализации, приведены в таблице.

Вид сырья. Нормы расхода пряжи. Запас
Свитера. Кофточки.
Шерсть 0,4 0,2 820
Силон 0,2 0,1 430
Нитрон 0,1 0,1 310
Прибыль 7,8 5,6 ?

Определить план выпуска изделий, максимизирующий прибыль.

Решение.

Пусть х1 и х2 – норма расхода пряжи для свитеров и кофточек соответственно. Количество пряжи каждого вида (в кг), необходимой для изготовления одного изделия запишем в следующую систему неравенств:

0,4х1 + 0,2х2 ≤ 820,

0,2x1 + 0,1x2 ≤ 430,

0,1x1 + 0,1x2 ≤ 310,

x1 , x2 ≥ 0.

Максимальная прибыль от реализации свитеров и кофточек выразим следующей функцией : F = 7,8x1 + 5,6x2 => max.

Изобразим многоугольник решений данной задачи.

В ограничениях задачи поменяем знаки неравенства на знаки равенства.

Построим в программе Excelтаблицы нахождения точек пересечения линий с осями координат (Рисунок 1) и график (Рисунок 2).

Рисунок 1.

К-во Просмотров: 494
Бесплатно скачать Курсовая работа: Решения задач линейного программирования геометрическим методом