Курсовая работа: Рівномірне наближення функцій ермітовими сплайнами
(28)
Згідно з означенням 4 параметри ланки (27) ермітового сплайна (23) задовольняють системі рівнянь (28):
(29)
де . Розв’яжемо систему (29) щодо невідомих . Із першого, третього і четвертого рівнянь системи (29) знайдемо вирази для
. (30)
Прирівняємо вирази для (31) із першого і четвертого та першого і третього рівнянь системи (29), отримаємо два вирази для
(31)
(32)
Прирівнявши між собою вирази для із (32) і (33), отримаємо рівняння
(33)
Підставивши перший вираз для (30) і перший вираз для (31) в друге рівняння системи (29) отримаємо рівняння
(34)
Підставивши третій вираз для (30) і перший вираз для (31) в п’яте рівняння системи (30) отримаємо рівняння
(35)
Ми отримали систему трьох лінійних рівнянь (23-35) щодо трьох невідомих . Розв’язавши її отримаємо
(36)
Із формул (30), (31), (32) і (36) для параметрів випливає, що необхідною умовою існування наближення ермітовим сплайном з ланкою (27) є виконання умови .
4. Похибки наближення ермітовими сплайнами
Максимальна похибка рівномірного наближення нелінійними ермітовими сплайнами з парною кількістю параметрів у ланці має вигляд
, (37)
а для ермітових сплайнів з непарною кількістю параметрів
(38)
де - кількість ланок сплайна на інтервалі , - вагова функція, - ядро похибки наближення, - дефект ермітового сплайна, . Для ермітового сплайна з ланкою (13) кількість параметрів , дефект сплайна за означенням , величина . Щоб скористатись формулами (37) і(38), потрібно мати вираз для ядра похибки наближення , який би не залежав від параметрів ланки сплайна . Вирази для конкретних ядер можна знайти, використовуючи властивості ядер похибок, які випливають із обмінних теорем.
Теорема 1. Нехай для функції при існує єдине наближення ермітовим сплайном з парною кількістю параметрів з вузлами і ланками вигляду
(39)