Курсовая работа: Рівномірне наближення функцій ермітовими сплайнами
(40)
Нехай — найбільша відносна похибка наближення функції на проміжку ермітовим сплайном з ланкою (39), а — найбільша відносна похибка наближення функції на проміжку ермітовим сплайном з ланкою вигляду (40). В цьому випадку між параметрами наближень мають місце співвідношення;
(41)
. (42)
Доведення. Сплайн з ланкою вигляду (39) характеризується системою рівнянь
(43)
а сплайн з ланкою вигляду (40) — системою рівнянь
(44)
Надалі опускаємо індекс, який вказує на приналежність параметра до -ї ланки. Із системи (44) при матимемо
.
Подамо як , про логарифмуємо це рівняння і отримаємо
,
де .Тобто при рівняння із системи (44) зведене до рівняння із системи (43).
При рівняння із системи (44) має вигляд
.
Помножимо чисельник і знаменник цього рівняння на
.
Оскільки з умов теореми не дорівнюють нулю, то рівність досягається за умови, що
,
а це і є рівняння із системи (43) при .
Використовуючи метод математичної індукції, покажемо, що рівняння із системи (44) зводиться до рівнянь із системи (43) за довільних . Нехай це доведено для . Доведемо для . Рівняння із системи (43) при :
.
Для рівняння із системи (44) має вигляд
.
Про диференціюємо це рівняння і отримаємо
Перший доданок в квадратних дужках дорівнює нулю через рівність нулю останнього співмножника. Рівняння набере вигляду