Курсовая работа: Рівномірне наближення функцій ермітовими сплайнами

(40)

Нехай — найбільша відносна похибка наближення функції на проміжку ермітовим сплайном з ланкою (39), а — найбільша відносна похибка наближення функції на проміжку ермітовим сплайном з ланкою вигляду (40). В цьому випадку між параметрами наближень мають місце співвідношення;

(41)

. (42)

Доведення. Сплайн з ланкою вигляду (39) характеризується системою рівнянь

(43)


а сплайн з ланкою вигляду (40) — системою рівнянь

(44)

Надалі опускаємо індекс, який вказує на приналежність параметра до -ї ланки. Із системи (44) при матимемо

.

Подамо як , про логарифмуємо це рівняння і отримаємо

,

де .Тобто при рівняння із системи (44) зведене до рівняння із системи (43).

При рівняння із системи (44) має вигляд

.

Помножимо чисельник і знаменник цього рівняння на

.


Оскільки з умов теореми не дорівнюють нулю, то рівність досягається за умови, що

,

а це і є рівняння із системи (43) при .

Використовуючи метод математичної індукції, покажемо, що рівняння із системи (44) зводиться до рівнянь із системи (43) за довільних . Нехай це доведено для . Доведемо для . Рівняння із системи (43) при :

.

Для рівняння із системи (44) має вигляд

.

Про диференціюємо це рівняння і отримаємо

Перший доданок в квадратних дужках дорівнює нулю через рівність нулю останнього співмножника. Рівняння набере вигляду


К-во Просмотров: 448
Бесплатно скачать Курсовая работа: Рівномірне наближення функцій ермітовими сплайнами