Курсовая работа: Сравнительный анализ численных методов
В пункте 1.2 для этой функции был выбран отрезок [3,4] и проверен на единственность корня.
Примем
х0=-0.1
х1=0.0125
х2=0.125
х3=0.237
х4=0.35.
Тогда многочлен Лагранжа будет иметь вид:
Вычислим значения функции (многочлена Лагранжа) в узлах интерполяции и исходной функции в тех же точках.
=-1.571 |
=-1.571 |
=-0.9245293 |
=-0.9245293 |
=-0.2011719 |
=-0.2011719 |
=-0.6076152 |
=-0.6076152 |
=1.510375 |
=1.510375 |
Как видно в узлах интерполяции значение интерполяционного многочлена Лагранжа и исходной функции равны.
Вычислим значения и в двух точках, отличных от узлов интерполяции, и сравним их.
Для сравнения выберем точки: середина крайней части отрезка х=0.29375 и середина части, содержащей точку (a+b)/2 - х=0.18125.
Результаты для точки находящейся в середине отрезка начинают различаться на 13 знаке после запятой; для крайней точки - на 14-ом знаке. Следовательно, точность данного метода достаточно велика.