Курсовая работа: Теория автоматического управления

wср < wкр

Данное условие не выполняется, следовательно, система неустойчива. Аналогичный вывод можно сделать по асимптотической ЛАЧХ и ЛФЧХ системы, построенной как сумма отдельных звеньев, входящих в систему, изображенной на рисунке (1.3.3):

в) Критерий Михайлова

Используя характеристическое уравнение замкнутой системы (2) введем функцию Михайлова:

, где

,

.

Для заданной системы функция Михайлова примет вид:

(9)

(10)

Графическое изображение функции Михайлова на комплексной плоскости при называется годографом Михайлова. Для устойчивости системы n-го порядка необходимо и достаточно, чтобы годограф Михайлова начинался на вещественной положительной полуоси и при увеличении частоты до ∞ проходил последовательно в положительном направлении n квадрантов, нигде не обращаясь в ноль.

Используя выражения (9) и (10), заполним таблицу:


Таблица 1.3.3

w

0

77,625

-

X ( w )

47

0

-

-∞

Y ( w )

0

-39,748

0

-∞

Построим годограф Михайлова (Рис. 1.3.4):

К-во Просмотров: 581
Бесплатно скачать Курсовая работа: Теория автоматического управления