Курсовая работа: Теория автоматического управления
Запишем передаточную функцию разомкнутой системы:
. (1)
Передаточная функция замкнутой системы имеет вид:
.
Характеристическое уравнение замкнутой системы:
(2)
Корни характеристического уравнения (2):
Характеристическое уравнение (2) имеет два правых корня, следовательно, данная замкнутая система неустойчива.
1.2 Анализ устойчивости системы по алгебраическому критерию
Для характеристического уравнения (2) замкнутой системы коэффициенты ai , i =0..3 ,
а0 =0.00008,
a 1 =0.0078,
a 2 = – 0.03,
a 3 =48.
Необходимым условием устойчивости системы является:
ai >0, i =0..3
Данное условие не выполняется (a 2 <0 ), следовательно, замкнутая система неустойчива.
1.3 Анализ устойчивости системы по частотным критериям
а) Критерий Найквиста (на комплексной плоскости)
Используя передаточную функцию разомкнутой системы (1) запишем характеристическое уравнение разомкнутой системы:
. (3)
Найдем корни характеристического уравнения (3):
Характеристическое уравнение разомкнутой системы (3) имеет один правый корень, следовательно, разомкнутая система неустойчива.
Построим годограф Найквиста. Для этого определим частотную передаточную функцию разомкнутой системы и ее действительную и мнимую части.
(4)
(5)
(6)
Используя выражения (5) и (6), заполним таблицу:
Таблица 1.3.1
w |
--> ЧИТАТЬ ПОЛНОСТЬЮ <-- К-во Просмотров: 580
Бесплатно скачать Курсовая работа: Теория автоматического управления
|