Курсовая работа: Теория игр 2
8 p1 = 7
p1 = 7/8 , p2 =1/8 .
Рассмотрим второго игрока.
Ожидаемые проигрыш второго игрока, если первый выберет 1 стратегию.p4 · 6 + (1- p4) · 5 = p4 + 5
Ожидаемые проигрыш второго игрока, если первый выберет 2 стратегию.
p4 · 1 + (1- p4) · 8 = -7 p4 + 8
p4 + 5 = -7 p4 + 8
p4 + 7 p4 = 8 – 5
8 p4 = 3
р 4 = 3/8 , p5 =5/8 .
u = .
Ответ : Из 4 игр (для первого) 7 надо сыграть 8 стратегией и 1 – 8, (для второго) 3 надо сыграть 8 стратегией и 5 – 8.
4. Сведение задач теории игр к задачам линейного
программирования
Предположим, что цена игры положительна (u > 0). Если это не так, то согласно свойству 6 всегда можно подобрать такое число с, прибавление которого ко всем элементам матрицы выигрышей даёт матрицу с положительными элементами, и следовательно, с положительным значением цены игры. При этом оптимальные смешанные стратегии обоих игроков не изменяются.
Свойство 1. Тройка (хо, yо, u) является решением игры G = (Х,Y,А) тогда и только тогда, когда (хо, yо, кu +а) является решением игры G(Х,Y,кА+а), где а – любое вещественное число, к > 0.
Свойство 2. Для того, чтобы хо = () была оптимальной смешанной стратегией матричной игры с матрицей А и ценой игры u, необходимо и достаточно выполнение следующих неравенств
(j = )
Аналогично для игрока 2 : чтобы yо = (, ...,, ...,) была оптимальной смешанной стратегией игрока 2 необходимо и достаточно выполнение следующих неравенств:
(i = )
Из последнего свойства вытекает: чтобы установить, является ли предполагаемые (х, y) и u решением матричной игры, достаточно проверить, удовлетворяют ли они неравенствам (*) и (**). С другой стороны, найдя неотрицательные решения неравенств (*) и (**) совместно со следующими уравнениями
,
получим решение матричной игры.
Итак, пусть дана матричная игра с матрицей А порядка m х n. Согласно свойству 7 оптимальные смешанные стратегии х = (х1, ..., хm), y = (y1, ..., yn) соответственно игроков 1 и 2 и цена игры u должны удовлетворять соотношениям.
Разделим все уравнения и неравенства в (4.4) и (4.5) на u (это можно сделать, т.к. по предположению u > 0) и введём обозначения:
, ,
Тогда (1) и (2) перепишется в виде: