Курсовая работа: Види розподілу ймовірностей й оцінка його параметрів
частоти ni 12 18 30
Розв’язок. Знайдемо обсяг вибірки: 12 + 18 + 30 = 60. Найменша варіанта дорівнює 2, отже,
F*(x) = О при x2. І
Значення X < 6, а саме x1 = 2, спостерігалося 12 разів, отже,
:F*(x) = 12/60 = 0,2 при
2<x6. I
значення x<10, а саме x1 = 2 і х2 = 6, спостерігалися 12 + 18 = 30 разів, отже,
F* (х) = 30/60 = 0,5 при 6 < х 10. Тому що x=10 — найбільша варіанта, то | F*(x)=1 при х > 10. Шукана емпірична функція
Графік цієї функції зображений на малюнку.
3 . Точечні та інтервальні оцінки параметрів розподілу
3.1 Точечна оцінка параметрів розподілу
Є два підходи до оцінювання невідомих параметрів розподілів по спостереженнях: точечний і інтервальний. Точечний вказує лише точку, біля якої знаходиться оцінюваний параметр; при інтервальному знаходять інтервал, що з деякою великою ймовірністю, що задається дослідником, накриває невідоме числове значення параметра. У главі розглядаються методи точечного оцінювання параметрів; будуються інтервальні оцінки параметрів нормального розподілу, обговорюється загальний підхід до інтервального оцінювання параметрів розподілу, відмінних від нормального.
3.1.1 Метод моментів
Метод моментів є одним із методів точечного оцінювання параметрів розподілу.
Нехай закон розподілу випадкової величини X відомий із точністю до числових значень його параметрів 1 ,2,…,k . Це означає, що відомий вид функції щільності fx (х, ), де = (1 ,2,…,k ), якщо X безперервна (відомий вид функції ймовірності Р (X = х, ), якщо X дискретна), але числові значення k параметрів не відомі. Знайдемо оцінку = (1 ,2,…, k ) параметра 0, розташовуючи вибіркою: х1 , х2 ..., хп.
Допустимо, що існує k початкових моментів, кожний із який можна висловити через (без обмеження спільності можна розглядати тільки початкові моменти, тому що центральні моменти є функціями початкових). Нехай такими моментами будуть перший, другий,..., k-й: v1 ,v2, …,vk (що зовсім не обов'язково). Висловимо кожний із них через :
(3.1)
Помітимо, що в системі
(3.2)
число рівнянь повинно бути рівним числу k оцінюваних параметрів. Знайдемо рішення системи (3.2). Висловивши кожний параметр q через v1 ,v2, …,vk , одержимо:
(3.3)
Властивість змістовності вибіркових початкових моментів є підставою для заміни в рівняннях (3.3) теоретичних моментів v1 ,v2, …,vk на обчислені при великому п вибіркові моменти v1 ,v2, …,vk .
Оцінками методу моментів параметрів 1 ,2,…,k називаються оцінки
(3.4)
Питання про те, які початкові моменти включати в систему (3.2), варто вирішувати, керуючись конкретними цілями дослідження і порівняльної простоти форм залежностей моментів від параметрів. У статистичній практиці справа рідко доходить навіть до четвертих моментів.
Приклад 3.1.1 Випадковий розмір Х~ N (а, σ ), при цьому числові значення параметрів а і σ 2 не відомі. Знайдемо оцінки методу моментів для цих параметрів.
Використовуючи формулу (3.1), висловимо моменти v1 і v2 через а й σ 2 :