Лабораторная работа: Амплитудная модуляция смещением
3.2.2 Спектр периодической последовательности видеосигналов
Периодический сигнал может быть представлен рядом Фурье:
, (3.7)
где X[n] – коэффициенты ряда Фурье.
(3.8)
Согласно выражениям (3.8) и (3.9) периодический сигнал состоит из суммы бесконечного числа гармонических колебаний кратных частот (гармоник), вклад которых в общую сумму определяется весовыми коэффициентами X[n]. Таким образом, являясь амплитудами дискретных частотных компонентов (гармоник) составляющих данный сигнал, коэффициенты X[n] образуют дискретный спектр периодического сигнала рисунок 3.4. «Востановленный» с помощью ряда Фурье сигнал, при суммировании десяти первых гармоник, приведен на рис 3.5.
Рисунок 3.4 - Спектр периодического сигнала.
Рисунок 3.5 - Сигнал представленный рядом Фурье, первая и вторая гармоники (пунктирные линии).
3.3 Радиосигнал
3.3.1 Математическая модель радиосигнала
Радиосигнал с огибающей в форме видеосигнала находим из соотношения:
, (3.9)
где
- математическая модель радиосигнала, В;
f0 - частота несущего высокочастотного колебания, Гц;
- начальная фаза колебания, рад.
Найдем частоту несущего высокочастотного колебания f0, которая совпадает с резонансной частотой колебательного звена:
(3.10)
где
- индуктивность колебательного звена, Гн,
- значение емкости колебательного звена, Ф.
Подставляя численное значение частоты несущего высокочастотного колебания (f0 =918,9 кГц), в (3.9) построим график радиосигнала рисунок 3.6.
Рисунок 3.6 - Радиосигнал
3.3.2 Спектр радиосигнала
Для отыскания спектральной плотности радиосигнала воспользуемся соотношением:
, (3.11)