Лабораторная работа: Класична лінійна регресія

Мета: Дослідити метод побудови загальної лінійної регресії та провести аналіз її основних характеристик

Задача: Навчитися отримувати оцінки параметрів загальної лінійної регресії за допомогою 1МНК, визначати статистичні властивості окремих оцінок і моделі в цілому, будувати точковий та інтервальний прогнози за допомогою отриманої моделі. Дослідити альтернативні способи оцінки параметрів лінійної регресії.

Завдання: Для даних з варіанту перевірити гіпотезу про лінійну залежність між змінними Y і X1 , X2 , X3 .

Необхідно:

Побудувати загальну лінійну модель і оцінити коефіцієнти регресії за допомогою оператора 1МНК.

Оцінити значущость окремих коефіціентів регресії і всієї моделі в цілому.

Побудувати точковий та інтервальний прогноз на 3 періоди.

Розрахувати оцінки коефіціентів регресії методом покрокової регресії.

Результати надати у звіті в письмовому вигляді.

Звіт містить дані варіанту, проміжні розрахунки, кінцеві результати кожного етапу дослідження з необхідними поясненнями і висновками


КОРОТКІ ТЕОРЕТИЧНІ ВІДОМОСТІ

1. Економетрична модель дає кількісну оцінку кореляційно-регресійного зв'язку між економічними показниками, один чи кілька з яких є залежними (Y), а решта — незалежними змінними (X), тому часто економетричні моделі називаються регресій ними моделями, або просто регресіями.

Припустимо, що істинний зв’язок між Y і Х є лінійним, тобто

b0 + b1 X1 + b2 X2 + ……. + bm Xm +e

або у матричному вигляді:

Y = Xb + e,

де Y- вектор залежних змінних моделі;

Х – матриця незалежних змінних моделі;

e - вектор відхилень моделі;

b - вектор параметрів моделі

Y = , Х = , b = , e =

Розглянемо його оцінку за допомогою лінійної регресійної моделі:

= b0 + b1 X1 + b2 X2 + ……. + bm Xm

Оцінки параметрів цієї регресії знаходяться з умови:

(1)

де е – вектор залишків моделі,

.

Продиференціювавши (1) по bj і прирівнявши відповідні часткові похідні по bj до 0, отримаємо такий вираз:

,

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 331
Бесплатно скачать Лабораторная работа: Класична лінійна регресія