Реферат: Аналитическая геометрия
Геом.смысл: прямая отсекает на осях координат отрезки а и b
3. x-x1 /e=y-y1 /m
Пусть на прямой задана точка и напр. вектор прямой (паралл.пр.). Возьмем на прямой произв. точки. q и M1 М(х-х1 ; y-y1 )
4. x-x1 /x2 -x1 =y-y1 /y2 -y1
Пусть на прямой даны две точки М1 (x1 ;y1 ) и М2 (x2 ;y2 ). Т.к. на прямой заданы две точки, то задан направляющий вектор q(x2 -x1 ; y2 -y1 )
5. y=kb+b.
u – угол наклона прямой. Tg угла наклона называется угловым коэффициентом прямой k=tg u
Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой tg u = m/e. Тогда видим x-x1 /e/e=y-y1 /m/e. y-y1 =k(x-x1 ) при y1 -kx1 =b, y=kx+b
6. xcosq+ysinq-P=0
q - угол между вектором ОР и положительным напр. оси ОХ.
Задача: записать ур-е прямой , если изветны Р и q
Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cosq, sinq). Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosqx+sinqy. Приравняем правые части.
Задача: прямая задана общим ур-ем. Перейти к норм. виду.
Ах+By+C=0
xcosq+ysinq-P=0
т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.
Cos2 q=(A*t)2
Sin2 q=(B*t)2
-p=C*t
cos2 q+sin2 q=t2 (A2 +B2 ), t2 =1/A2 +B2 , t=±sqrt(1/ A2 +B2 ). Sign t= - sign C
Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.
Аtх+Bty+Ct=0, t-нормирующий множитель.
7. Система: x=et+x1 и y=mt+y1
НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой.
1. xcosq+ysinq-P=0
q - угол между вектором ОР и положительным напр. оси ОХ.
Задача: записать ур-е прямой , если изветны Р и q
Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cosq, sinq). Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosqx+sinqy. Приравняем правые части.
Задача: прямая задана общим ур-ем. Перейти к норм. виду.