Реферат: Численное решение краевых задач для двумерного уравнения колебания

Для построения разностной схемы необходимо построить сетку Gh -конечное множество точек, принадлежащих G, плотность распределе­ния которых характеризуется параметрами h - шагом сетки. Пусть об­ласть изменения аргумента х есть отрезок. Разобьем этототрезок точками на n равных частей длины каждая. Множество точек называется равномернойсеткой на отрезке и обозначим , а число h -расстояние между точками (узлами) сетки называется шагом сетки. Разбиение отрезка точками можно производить произвольным образом -. Тогда получаем сетку с шагами , которое зависит от номера узла сетки. Если хотя бы в одной точке, то сетка называется неравномерной и такую сетку обозначают . Точки х0 и хn назовем граничными узлами и обозначим их. Остальные узлы назовем внутренними и обозначим их wh . Узлы соседние с гранича­щими назовем приграничными. Тогда имеем [4].

1.2. Сеточная функция. Пространство сеточных

функций. Нормы сеточных функций

Функция y=y(xi ) дискретного аргумента хi называется сеточной функцией, определенной на сетке . Сеточные функции можнорассматривать как функции целочисленного аргумента, являющегося номером узла сетки, т.е.. Далее мы будем писать .

Сеточная область wh зависит от параметра h. При различных значениях параметра h имеем различные сеточные области. Поэтому и сеточные функции yh (x) зависят от параметра h.

Функции u(х) непрерывного аргумента являются элементами функ­ционального пространства H. Множество сеточных функций yh (x) образует пространство Hh . Таким образом, в методе сеток простран­ство Н, заменяется пространством Hh сеточных функций yh (x).

Так как рассматривается множество сеток {wh }, то мы получаем множество {Hh }пространств сеточных функций, определенных на {wh }.

Пусть u(х) - решение исходной непрерывной задачи (1.1), uH; yh -решение разностной задачи. yh Hh . Для теории приближенных вычис­лений представляет большой интерес оценка близости u(х) и yh (x), но u(х) и yh (х) являются элементами из различных пространств. Прост­ранство Н отображается на пространство Hh . Каждой функции u(х)Н ставится в соответствие сеточная функция yh (x), х wh , так что yh =Ph u Нh , где Ph - линейный оператор из Н в Hh . Это соответствиеможно осуществить различными способами, т.е. зависит от выбора оператора Ph . Теперь, имея сеточную функцию uh , образуем разность yh -uh , которая является вектором пространства Hh Близость yh и uh , характеризуется числом , где - норма на Hh .

Соответствие функций u(х) и uh можно установить различными спо­собами, например,

uh =u(x), х wh .

В дальнейшем мы будем пользоваться этим способом соответствия.

В линейном пространстве Hh введем норму , которая являетсяаналогом нормы || • ||н в исходном пространстве Н. Обычно принятовыбирать норму в пространстве Hh так, чтобы при стремлении к нулю h она переходила в ту или иную норму функций, заданных на всем отрезке, т.е. чтобы выполнялось условие

, (1.2)

где - норма в пространстве функций, определенных на отрезке,

которому принадлежит решение.

Условие (1.2) называют условием согласования в пространствах Hh , и Н.

Рассмотрим простейшие типы норм в Hh для случая сеток wh ={xi =ih} на отрезке .

1.Норма

удовлетворяет условию (1.2), если в качестве Н рассматривать прост­ранство непрерывных функций с нормой

а сеточную функцию определять в виде (1.2), т.е.

2.Норма

удовлетворяет условию (1.2), если за Н принять пространство непре­рывных функций с нормой

а сеточную функцию определять в виде

[4, 6].

1.3. Аппроксимация дифференциальных операторов

Пусть имеем дифференциальный оператор . Этот операторможно аппроксимировать несколькими способами. Например,

К-во Просмотров: 317
Бесплатно скачать Реферат: Численное решение краевых задач для двумерного уравнения колебания