Реферат: Численные методы решения систем линейных алгебраических уравнений
т. е.
т. е.
и т. д [9].
Вывод: Итак, метод Гаусса (или, иначе, метод последовательного исключения неизвестных) состоит в следующем:
1. Путем элементарных преобразований систему уравнений приводят к эквивалентной ей системе с верхнее - треугольной матрицей. Эти действия называют прямым ходом.
2. Из полученной треугольной системы переменные находят с помощью последовательных подстановок (обратный ход).
3. При этом все преобразования проводятся над так называемой расширенной матрицей системы, которую и приводят к верхнее - треугольному виду в прямом ходе метода.
1.3 Итерация для линейных систем
Способ итераций дает возможность получить последовательность приближенных значений, сходящихся к точному решению системы, подобно тому, как это делается для одного уравнения.
Для определенности ограничимся системой из четырех уравнений с четырьмя неизвестными (система четвертого порядка), которую запишем в виде:
Разрешим первое уравнение системы относительно х1 :
х1 = (-a12 /a11 )х2 -a13 /a11 х3 -a14 /a11 х4 -a15 /a11 .
Затем разрешим второе уравнение относительно х2 и т. д. Тогда систему можно переписать в виде:
гдеα = -aik /aii , i = 1, 2, 3, 4; k = 1, 2, 3, 4, 5.
Система является частным случаем записи вида:
При этом линейная функция L1 фактически не зависит от х1 .
Зададим какие-либо начальные значения неизвестных (нулевые приближения):
х1 (0) , х2 (0) , х3 (0) , х4 (0) .
Подставляя эти значения в правые части системы (*), получим первые приближения:
Полученные первые приближения могут быть так же использованы для получения вторых, третьих и т. д. приближений. Т. е. можно записать:
Условия сходимости итерационного процесса.
Установим условия, выполнение которых обеспечит сходимость получающихся приближений к истинному (точному) решению системы х1 , х2 , х3 , х4 .