Реферат: Численные методы решения систем линейных алгебраических уравнений

3. Следует так же сказать, что итерационный процесс может проводиться как в виде итерации Якоби, так и в виде итерации Гаусса-Зейделя. В последнем случае сходимость итерационного процесса может существенно улучшиться.

Глава 2. Применение численных методов для решения систем линейных алгебраических уравнений в теории и на практике

§1 ЧИСЛЕННЫЕ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Существуют два типа ме­тодов — прямые и итерационные. Мы рассматриваем прежде всего метод исключения Гаусса для систем об­щего вида и варианты — метод прогонки и методы мат­ричной прогонки для систем специального вида (с трех-диагональной или блочно-трех диагональной матрицами). Это — прямые методы. Их эффективность зависит от по­рядка системы n структуры матрицы.

При изучении итерационных методов мы трактуем си­стему уравнений как операторное уравнение первого ро­да Au = f и излагаем общую теорию итерационных ме­тодов для операторных уравнений при минимальных предположениях относительно оператора А. Общая тео­рия позволяет доказать сходимость итераций для метода Зейделя и метода верхней релаксации при минимальных ограничениях на оператор А. Рассмотрены два класса методов: 1) для случая, когда известны границы γi > О и γ2 >= γ1 спектра оператора А в некотором энергетиче­ском пространстве HD ; 2) для случая, когда границы γ1 и γ2 неизвестны. Весьма эффективным является попере­менно-треугольный метод.

Основная задача линейной ал­гебры — решение системы уравнений

Au = f , (1)

где u=(u(1) , ..., u( N ) ) — искомый вектор, f={f(1) , f(2) ,... ..., f( n ) )—известный вектор размерности N , A =( aij ) ( i , j = 1, 2, ..., N ) — квадратная матрица размера NXNс элементами aij .

Будем предполагать, что матрица А невырождена, так что уравнение Аи = 0 имеет только триви­альное решение, и система (1) имеет единственноерешение

В курсе линейной алгебры решение системы (1) обыч­но выражают по формулам Крамера в виде отношений определителей. Для численного решения системы (1) эти формулы непригодны, так как они требуют вычисления N +1 определителей, что требует большого числа дей­ствий (порядка N! арифметических операций). Даже при выборе наилучшего метода вычисление одного определи­теля требует примерно такого же времени, что и реше­ние системы линейных уравнений современными числен­ными методами. Кроме того, следует иметь в виду, что вычисления по формулам Крамера часто ведут к боль­шим ошибкам округлений.

Особенность большинства численных методов для (1) состоит в отказе от нахождения обратной матрицы. Ос­новное требование к методу решения — минимум числа арифметических действий, достаточных для отыскания приближенного решения с заданной точностью е>0 (экономичность численного метода).

Выбор того или иного численного метода зависит от многих обстоятельств — от имеющихся программ, от вида матрицы А, от типа расчета и др. Поясним слова «тип расчета». Возможны разные постановки задачи:

1) найти решение одной конкретной задачи (1);

2) найти решение нескольких вариантов задачи (1) с одной и той же матрицей А и разными правыми частями. Может оказаться, что неоптимальный для одной задачи метод является весьма эффективным для мно­говариантного расчета.

При многовариантном расчете можно уменьшить сред­нее число операций для одного варианта, если хранить некоторые величины, а не вычислять их заново для каж­дого варианта. Это, конечно, зависит от машины, от объ­ема ее оперативной памяти.

При теоретических оценках каче­ства алгоритмов их сравнение проводится по числу q ( e ) арифметических действий, достаточных для нахождения решения задачи с заданной точностью е > 0 [15].

Прямые методы

Метод Гаусса. Имеется несколько вычислительных вариантов метода Гаусса, основанного на идее последо­вательного исключения. Процесс решения системы ли­нейных алгебраических уравнений Ax = f (1) по методу Гаусса состоит из двух этапов.

Первый этап (прямой ход). Система (1) приво­дится к треугольному виду

х + В*х = φ, (2)

где x =( x 1 , .. ., xN -) - неизвестный, φ= (φ1,…, φN ) —известный векторы, В* — верхняя треугольная матрица.

Второй этап (обратный ход). Неизвестные х N , xN -1 , ..., x 1 определяются по формулам (2) .

Метод квадратного корня. Этот метод пригоден для систем

Au = f (3)

с эрмитовой (в действительном случае — симметричной) матрицей А. Матрица А разлагается в произведение

А -= S * DS , (4)

где S — верхняя треугольная, D диагональная матрица. Решение уравнения Аu=fсводится к последователь­ному решению двух систем

S * Dy = f , Su = y . (5)

Метод квадратного корня требует порядка N2 /3 арифметических действий, т. е. при больших N он вдвое быстрее метода Гаусса и занимает вдвое меньше ячеек памяти. Это обстоятельство объясняется тем, что метод использует информацию о симметрии матрицы.

Итерационные методы

1. Метод итераций для решения системы линейных алгебраических уравнений .

Перейдем к общему описанию метода итераций для системы линейных алгебраических уравнений

Au=f (6)

Для ее решения выбирается некоторое начальное приближение у0 H и последовательно находятся приближенные решения (итерации) уравнения (1). Значение итерации yh +1 выражается через известные предыдущие итерации yk , yk -1 ,… Если при вычислении yh +1 используется толь­ко одна предыдущая итерация yh , то итерационный метод называют одношаговым (или двухслойным) методом; если же yk +1 выражается через две итерации yk и yk -1 , то метод называется двухшаговым (или трехслойным). Мы будем рассматривать в основном одношаговые методы. Будем считать, что А: H -> H — линейный оператор в конеч­номерном пространстве H со скалярным произведе­нием (•, •).

Важную роль играет запись итерационных методов в единой (канонической) форме. Любой двухслойный ите­рационный метод можно записать в следующей канони­ческой форме:

К-во Просмотров: 480
Бесплатно скачать Реферат: Численные методы решения систем линейных алгебраических уравнений