Реферат: Численные методы решения систем линейных алгебраических уравнений

Это условие можно сформулировать и более точно [20]:

Для сходимости процесса итераций достаточно, чтобы в каждом столбце сумма отношений коэффициентов системы к диагональным элементам, взятым из той же строки, была строго меньше единицы :

1.4 Итерация Якоби

Рассмотрим систему линейных уравнений:

Уравнения можно записать в виде:

Это позволяет предложить следующий итерационный процесс:

или (другой вид записи)

Покажем, что если начать с точки P0 = (х1 (0) , х2 (0) , х3 (0) , х4 (0) ) = (1, 2, 2), то итерация (3) сходится к решению (2, 4, 3). Подставим х1 = 1, х2 = 2, х2 = 2 в правую часть каждого уравнения из (3), чтобы получить новые значения:

Новая точка P1 = (х1 (1) , х2 (1) , х3(1) , х4 (1) ) = (1.75, 3.375, 3), ближе, чем P0 .

Итерация, использующая (3), генерирует последовательность точек {Pk }, которая сходится к решению (2, 4, 3):

k х1(k) х2(k) х3(k)
0 1.0 2.0 2.0
1 1.75 3.375 3.0
2 1.84375 3.875 3.025
3 1.9625 3.925 2.9625
4 1.990625 3.9765625 3.0
5 1.99414063 3.9953125 3.0009375
15 1.99999993 3.99999985 3.0009375
19 2.0 4.0 3.0

Этот процесс называется итерацией Якоби и может использоваться для решения определенных типов линейных систем [19].

1.5 Итерация Гаусса-Зейделя

Процесс итерации Якоби иногда можно модифицировать для ускорения сходимости.

Отметим, что итеративный процесс Якоби производит три последовательности – {х1 (k) }, {х2 (k) }, {х3 (k) }, {х4 (k) }. Кажется разумным, что х1 (k+1) может быть использовано вместо х2 (k ). Аналогично х1 (k+1) и х2 (k+1) можно использовать в вычислении х3 (k+1) . Например, для уравнений из системы (1) это даст следующий вид итерационного процесса Гаусса-Зейделя, использующий (3*):

Такой итерационный процесс даст результаты:

k х1 (k) х2 (k) х3 (k)
0 1.0 2.0 2.0
1 1.75 3.75 2.95
2 1.95 3.96875 2.98625
3 1.995625 3.99609375 2.99903125
8 1.99999983 3.99999988 2.99999996
9 1.99999998 3.99999999 3.0
10 2.0 4.0 3.0

Т. е. к точному решению мы пришли уже на 10-ом шаге итерации, а не на 19, как в итерации Якоби [19].

Вывод:

1. Способ итераций дает возможность получить последовательность приближенных значений, сходящихся к точному решению системы. Для этого система приводится к виду (для случая системы из четырех уравнений):

Эти формулы как раз и задают собственно итерационный процесс.

2. При этом чтобы итерационный процесс сходился к точному решению, достаточно, чтобы все коэффициенты системы были малы по сравнению с диагональными.

Это условие можно сформулировать и более точно:

К-во Просмотров: 483
Бесплатно скачать Реферат: Численные методы решения систем линейных алгебраических уравнений