Реферат: Численные методы
Найдем остаточный член, т.е. погрешность формулы (7). Выразим і где - функция (4), по формуле Тейлора с остаточным членом в интегральной форме :
(8)
(9)
Согласно (8) имеем
(10)
Отделив в правой части (9) слагаемое и заменив его выражением (10), с учетом того, что находим
Преобразуем теперь второе слагаемое в правой части, используя обобщенную теорему о среднем.
* Формула Тейлора с остаточным членом в интегральной форме
Теорема 1 (обобщенная теорема о среднем). Пусть причем на Тогда существует такая точка что
Доказательство. Положим
(11)
Тогд, так как то
и, следовательно,
Если то и в качестве можн взять любую точку из
Если то вытекает существование такого числа с, удовлетворяющего неравенствам ( для этого делим все части на ):
(12)
что
(13)
По теореме о промежуточных значениях непрерывной функции в силу (11) , (12) найдется точка , в которой что вместе с равенством (13) доказывает теорему .
Теперь, так как то по доказанной теоремою
где - некоторая точка . Подставляя полученное в , приходим к формуле трапеций с остаточным членом :