Реферат: Численные методы

1.Предположим, что Тогда существует такая точка , что

(4)

  1. Если то существует такая точка , что

(5)

  1. Когда то существует такая, что

(6) Доказательство. По формуле Тейлора

откуда следует (4).

Если то по формуле Тейлора

(7)

где

Подставим (7) в Получаем

Заменяя в соответствии с леммою 1

получаем

Откуда и следует (6).

Равенство (5) доказывается аналогично ( доказательство провести самостоятельно).

Формулы (4)-(6) называются формулами численного дифференцирования с остаточными членами.

Погрешности формул (1)-(3) оцениваются с помощью следующих неравенств, которые вытекают из соотношений (4)-(6):

Говорят, что погрешность формулы (1) имеет первый порядок относительно (или порядка ), а погрешность формул (2) и (3) имеет второй порядок относительно (или порядка ). Также говорят, что формула численного дифференцирования (1) первого порядка точности (относительно ), а формулы (2) и (3) имеют второй порядок точности.

Указанным способом можно получать формулы численного дифференцирования для более старших производных и для большего количества узлов интерполирования.

Выбор оптимального шага. Допустим, что граница абсолютной погрешности при вычислении функции в каждой точке удовлетворяет неравенству

(8)

Пусть в некоторой окрестности точки производные, через которые выражаются остаточные члены в формулах (5), (6), непрерывны и удовлетворяют неравенствам

(9)

где - некоторые числа. Тогда полная погрешность формул (2), (3) (без учета погрешностей округления) в соответствии с (5), (6), (8), (9)не превосходит соответственно величин

К-во Просмотров: 766
Бесплатно скачать Реферат: Численные методы