Реферат: Дифференциальные уравнения и описание непрерывных систем

Состояние системы, а также каждого входящего в нее элемента характеризуется некоторым числом независимых переменных. Этими переменными могут быть как электрические величины (ток, напряжение и т. д.), так и механические (скорость, угол поворота и т. д.). Обычно, чтобы характеризовать состояние системы или ее элемента, выбирают одну обобщенную координату на входе системы или элемента и одну – на выходе. Будем обозначать входную величину g(t), а выходную x(t). В ряде случаев такое представление невозможно, так как система или ее элемент могут иметь несколько входных и выходных величин. В многомерных системах можно рассматривать векторные входную и выходную величины с размерностями, совпадающими соответственно с числом входных и выходных элементов системы.

Рассмотрим пример: управление самолетом по углу рыскания. Предположим, что осевая линия самолета под действием порывов ветра отклонилась от заданного направления y на угол q (рис.1). Возвращение самолета на заданный курс осуществляется с помощью руля, отклонение которого равно j . Предполагается, что относительно оси, проходящей через центр тяжести ЦТ, самолет имеет момент инерции J. Восстанавливающая сила руля пропорциональна j, трением в воздухе пренебрегаем.

Уравнение движения запишется по второму закону Ньютона:

где kj(t) – восстанавливающая сила; m(t) – момент, вызванный порывами ветра. Разделив это уравнение на J и обозначив b=–k/J, x (t)=m(t)/J, а также принимая j(t) за управляющее воздействие u(t), получаем

Вводя в рассмотрение переменные состояния

к двум дифференциальным уравнениям первого порядка

которые в векторной форме запишутся так

Вводя векторно-матричные обозначения

приходим к дифференциальному уравнению:


2. Элементы теории дифференциальных уравнений

2.1. Понятие дифференциального уравнения

Уравнения, которые, кроме неизвестных функций одного или нескольких переменных, содержат также их производные, называются дифференциальными. Дифференциальные уравнения называются обыкновенными, если неизвестные функции являются функциями одного переменного, в противном случае дифференциальны е уравнени я называются уравнениями в частных производных.

Соотношение вида

называется дифференциальным уравнением n-го порядка. Решением дифференциального уравнения называется функция x=x(t), определенная на некотором интервале D't, которая, будучи подставлена в это уравнение, обращает его в тождество на всем интервале D. Это уравнение можно рассматривать как функцию, определяющую неявно производную n-го порядка x (n). При определенных условиях его можно решить относительно x(n):

Пусть x=x(t) – решение данного дифференциального уравнения. Тогда x(t) является непрерывной и непрерывно дифференцируемой функцией t. На плоскости (t,x) решению x=x(t) будет соответствовать непрерывная кривая, называемая интегральной кривой.

Функция x=x(t,C) называется общим решением дифференциального уравнения, если путем соответствующего выбора постоянной можно любую интегральную кривую.


2.2. Нормальная система дифференциальных уравнений

В дифференциальные уравнения вида

может входить n неизвестных функций x1,…, xn . Тогда системой дифференциальных уравнений будет совокупность соотношений

Предположим, что эту систему можно разрешить относительно старших производных. В этом случае получим систему уравнений:

К-во Просмотров: 448
Бесплатно скачать Реферат: Дифференциальные уравнения и описание непрерывных систем