Реферат: Динамика вращательного движения твердого тела
а) материальной точки (см. формулу (1.8));
б)дискретного твердого тела (см. формулу (1.9));
в) сплошного твердого тела (см. формулу (1.10)).
В случае непрерывного распределения массы тела (сплошное однородное твердое тело), тело делится на бесконечно малые участки массы и, считая их за материальные точки, находятся моменты инерции этих участков относительно оси вращения, а затем производится интегрирование.
Моменты инерции некоторых тел правильной геометрической формы приведены в таблице 1.
Таблица 1
Тело | Ось, относительно которой определяется момент инерции | Формула момента инерции |
Однородный тонкий стержень массой ![]() ![]() |
Проходит через центр тяжести стержня перпендикулярно стержню. Проходит через конец стержня перпендикулярно стержню. |
1/12
1/3 |
Тонкое кольцо, обруч, труба радиусом ![]() ![]() ![]() ![]() | Проходит через центр перпендикулярно плоскости основания | ![]() |
Круглый однородный диск (цилиндр) радиусом ![]() ![]() | Проходит через центр диска перпендикулярно плоскости основания | 1/2![]() |
Однородный шар массой ![]() ![]() | Проходит через центр шара | 2/5![]() |
Диск массой ![]() ![]() | Относительно оси вращения, совпадающей с диаметром диска | 1/4![]() |
Если ось вращения не проходит через центр масс тела, то момент инерции тела относительно этой оси можно определить по теореме Штейнера: момент инерции тела относительно произвольной оси
равен сумме моментов инерции этого тела
относительно оси вращения О1 О2, проходящей через центр масс тела С параллельно оси
, и произведения массы тела на квадрат расстояния
между этими осями (см. Рис. 1), т.е.
.
Момент инерции системы отдельных тел равен (например, момент инерции физического маятника равен
, где
момент инерции стержня, на котором крепится диск с моментом инерции
).
Чаще всего при решении задач основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси в случае постоянных момента силы и момента инерции
используется в виде
, где изменение момента импульса вращающего тела равно произведению среднего момента сил, действующего на тело, на время действия этого момента.
В общем случае в момент сил могут входить: вращающий момент сил, момент сил трения, моменты сил натяжения нитей (при решении задач на блоки, через которые перекинута нить и т.д.). При решении задач на блоки необходимо обычно учитывать массу блока, и, следовательно, момент инерции блока, что приводит к тому, что силы натяжения нитей по обе стороны блока не будут одинаковыми и как следствие к появлению вращающего момента сил, равного разности моментов сил по обе стороны блока.
3. Классическиепримеры решения некоторых типовых задач
Пример 1
Чему равен момент инерции цилиндра с диаметром основания
d и высотой Н относительно оси
совпадающей с его образующей? Плотность материала цилиндра
.
Дано:
d ;
Н;
.
?
Рис. 2
Решение: Согласно теоремы Штейнера момент инерции цилиндра относительно оси
равен сумме его момента инерции
относительно оси симметрии
, проходящей через центр цилиндра С, и произведения массы цилиндра
на квадрат расстояния
между осями
и
:
.(1)
Момент инерции цилиндра относительно оси
определяется формулой
, где
, поэтому
.(2)
Массу цилиндра выразим через его плотность и объем
:
, где
, поэтому
; площадь основания цилиндра
и, следовательно,
.(3)