Реферат: Элементы теории представлений

Компоненты и в - представлении находим, раскладывая эти функции в ряд по собственным функциям оператора :

, (Ι)

(ΙΙ)

(ΙΙΙ) (ΙV).

Подставляем разложение (Ι) и (ΙΙ) в скалярное произведение функций:

.

Меняя местами знаки суммирования и интегрирования и учитывая ортонормированность собственных функций оператора получаем:

.

Чтобы получить такое выражение по правилу умножения матриц, следует перемножить матрицу-строку

(V)

на матрицу-столбец (ΙΙΙ):

Матрица (V) транспонирована по отношению к матрице (ΙV) и ее элементы комплексно сопряжены с элементами последней. Такая матрица называется сопряженной с и обозначается . Таким образом, комплексно сопряженной функции под знаком интеграла соответствует сопряженная матрица.

2. Обозначения Дирака

Проведена аналогия между собственными функциями эрмитовых операторов и ортами прямоугольных координатных осей. Продолжим ее обсуждение.

Вектор в - мерном пространстве задается совокупностью , вообще говоря, комплексных величин, называемых компонентами этого вектора

Аналогия между соотношениями и очевидна. Выражение определяет вектор через его проекции на оси координат в многомерном пространстве. Выражение является разложением -функции по собственным функциям некоторого оператора. Систему ортонормированных собственных функций , следовательно, можно рассматривать как базис в бесконечномерном пространстве, а величины – как компоненты -функции по осям этого базиса. В зависимости от выбора базиса (т. е. от выбора системы собственных функций, следовательно, от выбора представления) получается та или иная совокупность компонент .

Переход от одного представления к другому геометрически означает переход от системы координат, образованных базисными векторами (собственными функциями) одного оператора к системе координат, образованных базисными векторами (собственными функциями) другого оператора. Таким образом, квантовое состояние микрообъекта не обязательно должно характеризоваться волновой функцией в реальном пространстве. Квантовое состояние не сводится к одной какой-то совокупности амплитуд вероятности

и т. п. Каждая из этих совокупностей отражает одну из сторон понятия квантового состояния и является одной из возможных его реализаций. Аналогично, вектор в - мерном евклидовом пространстве может быть представлен совокупностью его проекций в различных системах координат:

,

и т. п. Здесь – базисные векторы (орты), например, в сферической системе координат, – в декартовой.

Данная аналогия привела П. Дирака к мысли характеризовать состояние системы вектором состояния в бесконечномерном гильбертовом пространстве. Вектор состояния он предложил обозначать символом . В середине скобки, по Дираку, должен помещаться индекс состояния, т. е. величина или набор величин, которые определяют состояние системы. Например, если система находится в состоянии с энергией , то записывают или . Этот вектор состояния называют кэт-вектором. Он характеризует состояние системы независимо от выбора представления. Кэт-вектору сопоставляется бра-вектор, обозначаемый зеркально отраженной скобкой . Бра-вектор связан с кэт-вектором соотношением =+ . Например, если совокупность компонент кэт-вектора представлена в виде матрицы

=, то =+ =.

Внутри скобки помещается индекс представления. Например, | означает, что используется координатное представление. Скалярное произведение кэт и бра-векторов обозначается полным скобочным выражением и представляет собой число. Например, волновая функция в - представлении с помощью скобок записывается так: . Волновая функция свободной частицы, находящейся в состоянии определенным значением импульса в координатном представлении (время фиксировано):

,

Название «бра» и «кэт» соответствуют двум частям английского слова «bracket» (скобка).

Волновая функция (амплитуда вероятности), как известно, характеризует вероятность результатов измерений, проводимых над системой. Скобочное выражение составлено так, что справа указывается начальное состояние, а слева – то, в которое переходит система при измерении, т. е. конечное. Таким образом, скобочная запись читается справа налево. Например, есть амплитуда вероятности того, что система будет иметь координату , если она находится в состоянии характеризуемом импульсом .

К-во Просмотров: 405
Бесплатно скачать Реферат: Элементы теории представлений