Реферат: Элементы теории представлений
Совокупность амплитуд есть волновая функция
в
-представлении, совокупность амплитуд
- волновая функция
в
-представлении. Подставим разложение (3.3.2) и (3.3.3) в (3.3.1):
Умножим левую и правую части этого равенства на и проинтегрируем по всей области изменения независимых переменных. Знаки суммирования и интегрирования меняем местами. Поскольку собственные функции ортогональны и нормированы, т.е.
, имеем
Вводя обозначение
получаем
Если спектр оператора непрерывен, имеем аналогично
Таким образом, с помощью набора величин можно волновую функцию
в
- представлении, являющуюся совокупностью амплитуд, превратить в волновую функцию
в том же представлении. Поэтому совокупность величин
является оператором
в
- представлении. Его можно представить в виде матрицы:
Величины называют матричными элементами. В обозначениях Дирака
Итак, операторы квантовой механики могут быть представлены в матричной форме. Поскольку в квантовой механике применяются только эрмитовы операторы, удовлетворяющие условию, т о.
Такие матрицы называют самосопряженными или эрмитовыми.
Таким образом, каждой физической величине соответствует не один, а множество операторов. Вид оператора данной физической величины зависит от выбора независимых переменных. Зная оператор физической величины в одном представлении, можно найти его в других представлениях. Например, если известен вид оператора в -представлении, то для получения его в матричной форме в
-представлении надо воспользоваться собственными функциями оператора
в
-представлении в соответствии с формулой (3.3.4). Свойства физической величины (эрмитовость ее оператора, спектр собственных значений, среднее значение и т.д.) не зависят от выбора представления. (Аналогия с принципом относительности Эйнштейна: законы природы инвариантны (неизменны) при переходе от одной инерциальной системы отчета к другой).
Пример. Найти матричные элементы оператора в его собственном представлении.
В этом случае в (3.3.4) – собственная функция оператора
:
С помощью этого уравнения преобразуем выражение для матричного элемента (3.3.4):
Поскольку собственные функции ортогональны и нормированы, получаем: . Таким образом, в своем собственном представлении любой оператор в матричной форме является диагональной матрицей, диагональные элементы которой равны собственным значениям этого оператора:
Итак, чтобы найти собственные значения оператора, заданного в форме матрицы, нужно привести эту матрицу к диагональному виду.