Реферат: Элементы теории представлений

Пусть в выражении

волновая функция и оператор заданы в координатном представлении. Перейдем к - представлению. Воспользуемся разложением (3.3.2) функции в ряд по собственным функциям оператора . Подставляя в выражение для среднего значения и меняя местами знаки суммирования и интегрирования, получаем

Совокупность есть матрица с одним столбцом. Совокупность - сопряженная матрица с одной строкой. Поэтому (3.3.8) можно записать как произведение соответствующих матриц:

где - оператор в - представлении.

Вопросы для самопроверки

1. Что называют индексом состояния? индексом представления?

2. Как, зная волновую функцию системы в одном представлении, найти ее в другом представлении?

3. Как, зная вид оператора в одном представлении, найти его в другом представлении?

4. Определите понятие матричного элемента оператора.

5. Что представляет собой матричные элементы оператора в его собственном представлении?

6. Что такое вектор состояния, кэт-вектор, бра-вектор? Какая связь между и ?

7. Какая связь между вектором состояния системы и ее волновой функцией?

8. Записать в обозначениях Дирака волновую функцию системы в - представлении и в - представлении, если ее вектор состояния .

9. Изменяется ли среднее значение физической величины при переходе к другому представлению?

10. Записать в матричной форме (в - представлении) выражение для среднего значения величины, соответствующей оператору .

Упражнения

3.1 Найти операторы координаты и импульса в импульсном представлении.

Решение. Для простоты рассматриваем одномерное движение вдоль оси . В координатном представлении

, (см §2.7).

В импульсном (т.е. в своем собственном) представлении . Найдем оператор координаты.

Способ 1. Воспользуемся тем, что среднее значение физической величины не зависит от используемого представления:


(I)

В левой части равенства все величины даны в координатном представлении, в правой – в импульсном. Связь между волновыми функциями в координатном и импульсном представлениях определяется соотношением

,

Где

К-во Просмотров: 411
Бесплатно скачать Реферат: Элементы теории представлений