Реферат: Исследование свойств прямоугольного тетраэдра
Доказательство.
Пусть AD- высота гипотенузной грани АВС, проведённая к ребру ВС из вершины А, ОD- проекция AD на катетной грани ОВС, OD перпендикулярно ВС, т.к. AD перпендикулярно ВС и АО перпендикулярно ОВС (обратная теорема о трёх перпендикулярах). SABC= 1/2 BC×AD
SOBC=1/2 BC×OD
SOAB =1/2 OA×OB
SOAC=1/2OA×OC
S² OBC+S ²OAB +S ²AOC= 1/4(BC²×OD²+OA²×OB²+OA²×OC²)=
=1/4(BC²×OD²+OA²(OB²+OC²))=1/4(BC²×OD²+OA²×BC²), т.к.
ОВ²+ОС²=ВС² (по теореме Пифагора)
S²OBC+S²OAB+S²OAC=1/4 BC²(OD²+OA²)=1/4 BC²×AD² , т.к.
OD²+OA²=AD² (по теореме Пифагора)
т.е. S²OBC+S²OAB+S²OAC=S²ABC
S²1+S²2+S²3=S², что и требовалось доказать.
II . Сумма квадратов гипотенуз равна удвоенной сумме квадратов катетов.
Дано: А
ОАВС- прямоугольный тетраэдр
где а , b , с - катеты. В
АВ, ВС и АС- гипотенузы а
Доказать: b
АВ²+ВС²+АС²=2(а² + b² +с²)
Доказательство. О
АВ² = а² + b² с С
ВС² = b² + с² (по теореме Пифагора)
АС² = а² + с²
АВ² + ВС² + АС² =2а² + 2 b² +2с² , что и требовалось доказать.
III. Объём прямоугольного тетраэдра равен 1/6 произведения катетов.
А
Дано:
ОАВС - прямоугольный тетраэдр
а , b , с - катеты. В
Доказать: а b
V=(1/6) а · b · с