Реферат: Исследование свойств прямоугольного тетраэдра
ОД/ b = а/ВС или ОД = (аb)/ВС = (аb)/ √ а² +b²
Следовательно, _______________ ________________________
АД = √ (аb)/( а² +b²) + Н² = √[(аb)² +(bH)² + (аH)²]/( а² +b²)
_________________
В результате получаем SАВС = (1/2) √ (аb)² +(bH)² + (аH)²
_________________
Cледовательно, S полн.= (1/2) [√ (аb)² +(bH)² + (аH)² + аН + bН + аb]
2) Решение с использованием первого свойства прямоугольного тетраэдра:
Sполн.= SАОС + SАОВ + SВОС + SАВС
SАОС = (1/2)аН; SАОВ = (1/2)bН; SВОС = (1/2)аb;
___________________ _________________
SАВС = √ SАОС ² + SАОВ ² + SВОС ² = (1/2)√ (аb)² +(bH)² + (аH)²
_________________
Cледовательно, S полн.= (1/2)(√ (аb)² +(bH)² + (аH)² + аН + bН + аb)
Задача №280 (стр.76) учебного пособия: Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. Геометрия.-М.: Просвещение, 1994.
Ребро куба равно а. Найти площадь сечения, проходящего через диагонали двух его граней
К L
Дано:
ОВДСАКLM - куб А М
ОА = а, ОВ = b, ОС = с – ребра
ΔАВС – сечение куба плоскостью, прохо-
дящей через диагонали смежных а
граней. В Д
Найти: а
SАВС О
а С
1) Решение по традиционной схеме:
Найдем стороны сечения АВС с помощью теоремы Пифагора:
______ __