Реферат: Исследование свойств прямоугольного тетраэдра
____________
h = (abc) / √a²b²+b²c²+a²c² , что и требовалось доказать.
Косинусы направляющих углов нормали к гипотенузной грани определяются по формулам:
____________
cos α = h / a= (bc)/√a²b²+b²c²+a²c²
____________
сos β = h / b = (ac) / √a²b²+b²c²+a²c²
____________
cos γ = h /c= (ab)/√a²b²+b²c²+a²c²
где a, b, c – катеты тетраэдра;
α – угол между катетом а и нормалью
β – угол между катетом b и нормалью
γ – угол между катетом с и нормалью.
h – нормаль
Дано:
ОАВС - прямоугольный тетраэдр.
ОА = а, ОВ = b, ОС = с - катеты
ОД = h – нормаль к грани АВС А
Доказать: Д
____________
cosα = (bc) / √a²b² +b²c² +a²c² h
____________ а В
cosβ = (ac) / √a²b² +b²c² +a²c² α b
____________ β
cosγ = (ab) / √a²b² +b²c² +a²c² γ
С
О с
Доказательство.
Соединим точку Д с точкой А и получим прямоугольный треугольник ОАД