Реферат: Характеристики систем автоматического управления
Статические характеристики определяют статику системы, т.е. ее поведение в установившемся режиме.
Статической характеристикой называется отношение выходной величины к входной величине в установившемся режиме.
Статические характеристики позволяют: определить коэффициент усиления системы; степень ее нелинейности; величину статизма; произвести согласование рабочих точек системы.
2. Динамические характеристики САУ
Динамические характеристики определяют динамику системы, т.е. ее поведение в неустановившемся (переходном) режиме. При этом используют следующие основные динамические характеристики:
– передаточная функция;
– временные характеристики;
– частотные характеристики.
2.1 Передаточная функция системы и ее свойства
Дифференциальное уравнение линейной системы имеет вид:
(1)
где аi и bi – параметры системы, n -порядок системы.
Если применим теоремы Лапласа при нулевых начальных условиях, то дифференциальное уравнение в операторной форме запишется следующим образом
где
Физически нулевые начальные условия обозначают, что до приложения воздействия система находилась в покое.
Передаточная функция системы есть отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях
(2)
Основные свойства передаточной функции:
1. Передаточная функция является полной характеристикой системы.
Она полностью характеризует статические и динамические свойства системы.
2. Статический коэффициент усиления, т.е. коэффициент усиления в установившемся режиме (при t ® ¥ или p ® 0) равен
.
3. Полином знаменателя называется характеристическим, а A(p) = 0 называется характеристическим уравнением. Корни полинома знаменателя называются полюсами, а числителя нулями.
Степень полинома числителя не превышает степени полинома знаменателя (n ³ m ), в противном случае система является физически нереализуемой.
5. Коэффициенты полиномов ai и bi обусловлены реальными физическими параметрами системы.
6. Передаточная функция может быть задана в виде нулей и полюсов в графическом виде.
Рис. 1
Например, для приведенного на рис. 1 расположения нулей (0) и полюсов (х) передаточная функция имеет вид:
.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--