Реферат: Компонентный и факторный анализ
Так как , то гипотеза отвергается, то есть собственные числа и не кратны.
:
Так как , то гипотеза отвергается, то есть собственные числа и не кратны.
Необходимо выделить главные компоненты на уровне информативности 0,85. Мера информативности показывает какую часть или какую долю дисперсии исходных признаков составляют k-первых главных компонент. Мерой информативности будем называть величину:
I1 ==0,458
I2 ==0,667
I3 =
На заданном уровне информативности выделено три главных компоненты.
Запишем матрицу =
Для получения нормализованного вектора перехода от исходных признаков к главным компонентам необходимо решить систему уравнений: , где - соответствующее собственное число. После получения решения системы необходимо затем нормировать полученный вектор.
Для решения данной задачи воспользуемся функцией eigenvec системы MathCAD, которая возвращает нормированный вектор для соответствующего собственного числа.
В нашем случае первых четырех главных компонент достаточно для достижения заданного уровня информативности, поэтому матрица U (матрица перехода от исходного базиса к базису из собственных векторов)
Строим матрицу U, столбцами которой являются собственные вектора:
U=.
Матрица весовых коэффициентов:
А=.
Коэффициенты матрицы А являются коэффициентами корреляции между центрировано – нормированными исходными признаками и ненормированными главными компонентами, и показывают наличие, силу и направление линейной связи между соответствующими исходными признаками и соответствующими главными компонентами.
2.2 Экономическая интерпретация полученных главных компонент
Коэффициент матрицы А представляют собой коэффициенты корреляции между i-ой главной компонентой и j-ым исходным признаком.
Так как первая главная компонента зависит главным образом от первого (X5 – удельный вес рабочих в составе ППП) и третьего (X7 – коэффициент сменности оборудования) исходного признака, следовательно ее можно обозначить как «Эффективность основного производства». Вторая главная компонента тесно взаимосвязана со вторым (X6 – удельный вес покупных изделий) и четвертым (X9 – удельный вес потерь от брака) исходными признаками, ее можно обозначить как «Удельный вес затрат не приносящих прибыль». Третья главная компонента взаимосвязана с четвертым исходным признаком, поэтому ее обозначим «Удельный вес потерь от брака».
2.3 Матрица наблюденных значений главных компонент.
Мы получили ненормированные главные компоненты. Проведя нормирование полученных центрированных , получим . При нормировании дисперсия должна равняться 1, . Для этого нужно разделить на среднеквадратическое отклонение .
Обозначим - это матрица весовых коэффициентов, с помощью которой устанавливается связь между нормированными исходными признаками и нормированными главными компонентами.
Модель метода главных компонент:
где
- значение I - той стандартизированной переменной по j - ому объекту наблюдения;