Реферат: Компонентный и факторный анализ

- весовой коэффициент m - той главной компоненты и I - той переменной.

Эту матрицу будем строить, исходя из соотношения ,

где - диагональная матрица, на главной диагонали которой стоят дисперсии соответствующих главных компонент в минус первой степени;

- транспонированная матрица факторных нагрузок;

Х- матрица наблюденных значений исходных признаков.

Данная формула хороша тем, что она верна и в том случае, если матрица

А не квадратная (т.е. выделено m<n главных компонент).

«Наблюденные» значения главных компонент приведены в Приложениях.

2.4 Классификация объектов.

Проведем классификацию объектов по первым двум главным компонентам.

Рис.1: Объекты в пространстве главных компонент.

На рис.1 видно, что первая группа характеризуется положительными значениями первой главной компоненты, а вторая группа характеризуется отрицательными значениями первой главной компоненты. При этом значения второй главной компоненты схожи у обеих групп.

2.5 Уравнение регрессии на главные компоненты.

Построим уравнение регрессии на выделенные главные компоненты методом пошаговой регрессии, который предполагает, что на каждом шаге мы будем включать в уравнение регрессии тот признак, который будет вызывать наибольшее приращение коэффициента детерминации.

Процесс будет остановлен, когда величина достигнет своего максимума.

В итоге уравнение регрессии примет вид:

Подробный анализ, выполненный с помощью программы “Stadia”, приведен в Приложениях.

3.Метод главных факторов

Мы ставим перед собой задачу снижения размерности признакового пространства. С самого начала будем исходить из того, что мы n признаков попытаемся объяснить с помощью меньшего количества m-ла­тентных признаков - общих факторов, где m<<n, а различия между исход­ными признаками и введёнными общими факторами, точнее их линейными комбинациями учтём с помощью так называемых характерных факторов.

Конечная цель статистического исследования, проводимого с привлече­нием аппарата факторного анализа, как правило, состоит в выявлении и интерпретации латентных общих факторов с одновременным стремлением ми­нимизировать как их число, так и степень зависимости от своих специфиче­ских остаточных случайных компонент .

Итак, в нашем распоряжении последовательность многомерных наблюде­ний Х.

Предполагаем, что каждый признак является результатом воздейст­вия m гипотетических общих и одного характерного факторов:

(1)

- весовые коэффициенты;

- общие факторы, которые подлежат определению;

- характерный фактор для i-ого исходного признака;

- весовой коэффициент при i-ом характерном факторе.

Представим выражение (1) в матричной форме.

Введём обозначения:

К-во Просмотров: 447
Бесплатно скачать Реферат: Компонентный и факторный анализ