Реферат: Компонентный и факторный анализ
- весовой коэффициент m - той главной компоненты и I - той переменной.
Эту матрицу будем строить, исходя из соотношения ,
где - диагональная матрица, на главной диагонали которой стоят дисперсии соответствующих главных компонент в минус первой степени;
- транспонированная матрица факторных нагрузок;
Х- матрица наблюденных значений исходных признаков.
Данная формула хороша тем, что она верна и в том случае, если матрица
А не квадратная (т.е. выделено m<n главных компонент).
«Наблюденные» значения главных компонент приведены в Приложениях.
2.4 Классификация объектов.
Проведем классификацию объектов по первым двум главным компонентам.
Рис.1: Объекты в пространстве главных компонент.
На рис.1 видно, что первая группа характеризуется положительными значениями первой главной компоненты, а вторая группа характеризуется отрицательными значениями первой главной компоненты. При этом значения второй главной компоненты схожи у обеих групп.
2.5 Уравнение регрессии на главные компоненты.
Построим уравнение регрессии на выделенные главные компоненты методом пошаговой регрессии, который предполагает, что на каждом шаге мы будем включать в уравнение регрессии тот признак, который будет вызывать наибольшее приращение коэффициента детерминации.
Процесс будет остановлен, когда величина достигнет своего максимума.
В итоге уравнение регрессии примет вид:
Подробный анализ, выполненный с помощью программы “Stadia”, приведен в Приложениях.
3.Метод главных факторов
Мы ставим перед собой задачу снижения размерности признакового пространства. С самого начала будем исходить из того, что мы n признаков попытаемся объяснить с помощью меньшего количества m-латентных признаков - общих факторов, где m<<n, а различия между исходными признаками и введёнными общими факторами, точнее их линейными комбинациями учтём с помощью так называемых характерных факторов.
Конечная цель статистического исследования, проводимого с привлечением аппарата факторного анализа, как правило, состоит в выявлении и интерпретации латентных общих факторов с одновременным стремлением минимизировать как их число, так и степень зависимости от своих специфических остаточных случайных компонент .
Итак, в нашем распоряжении последовательность многомерных наблюдений Х.
Предполагаем, что каждый признак является результатом воздействия m гипотетических общих и одного характерного факторов:
(1)
- весовые коэффициенты;
- общие факторы, которые подлежат определению;
- характерный фактор для i-ого исходного признака;
- весовой коэффициент при i-ом характерном факторе.
Представим выражение (1) в матричной форме.
Введём обозначения: