Реферат: Квадратичні форми їх приведення до діагонального вигляду Приведення рівняння кривої другого п
Зведення цих рівнянь до канонічної форми здійснюється за два етапи.
І. Зведення квадратичної форми
до канонічного вигляду (4.26)
(4.27)
В результаті здійснення першого кроку рівняння (4.24) набуває вигляду
4.28)
2. Другий крок полягатиме в тому, щоб паралельним перенесенням системи координат позбутися або всіх членів з першими степенями , і , або двох із них, або лише одного. Рівняння (4.25) спрощується так само. Різниця лише в тому, що вказані два етапи будуть значно простішими, бо в (4.25) маємо справу не з трьома, а з двома змінними.
Питання про спрощення квадратичних форм розглядалося в попередньому параграфі..
Перший етап. Поворот системи координат.
Знаходимо корені характеристичного рівняння:
Нехай коренями цього рівняння (власними значеннями) відносно є числа .
Тоді рівняння (4.24) можна записати у вигляді (4.28) після того, коли буде знайдене ортогональне перетворення, яке переводить квадратичну форму (4.26) в (4.27). Знаходження ортогонального перетворення потрібне для того, щоб обчислити коефіцієнти в (4.28). Ортогональне перетворення з геометричної точки зору є повертанням системи координат на такий кут, щоб осі координат збігалися з осями симетрії поверхні, якщо вона має три осі симетрії. У випадках двох осей симетрії - щоб дві з осей координатної системи збіглися з осями симетрії, у випадку однієї з осей симетрії - з однією з осей координат.
Другий етап. Паралельне перенесення системи координат.
Тепер матимемо справу з рівнянням (4.28). У ньому мусить бути хоч одне з відмінним від нуля. Для спрощення рівняння (4.28) здійснимо паралельне перенесення системи координат за формулами
(4.29)
Для цього формули (4.29) підставимо в (4.28). Після елементарних перетворень одержимо:
(4.30)
Якщо кожне з не дорівнює нулю, то члени з можна перетворити в нуль, підібравши так, щоб .
Звідси знаходимо
У цьому випадку рівняння поверхні набуває вигляду
(4.31)
де
Поверхня (4.31) буде або еліпсоїдом, або однопорожнинним гіперболоїдом (дійсним чи уявним), або двопорожнинним гіперболоїдом, або єдиною точкою, або конусом, або уявним еліпсоїдом. Читачеві пропонується розібратися в цьому самостійно.
Припустимо, що серед величин одна, наприклад , дорівнює нулю. Тоді в (4.30) неможливо знищити коефіцієнт при (чому?). Тому для визначення потрібно прирівняти до нуля коефіцієнти при і , а також вільний член.
В результаті одержимо поверхню