Реферат: Квадратичні форми їх приведення до діагонального вигляду Приведення рівняння кривої другого п
Задане рівняння стає таким:
Якщо здійснити в цьому рівнянні паралельне перенесення системи координат за формулами , то, прирівнявши до нуля коефіцієнти при і і розв’язавши відповідну систему рівнянь одержимо
Рівняння відносно і набирає найпростішої (канонічної ) форми:
еліпс.
Отже, дане рівняння є еліпсом (рис. 4.1).
Рис. 4.1
Приклад 3. Визначити, яку поверхню визначає рівняння
.
Р о з в ’ я з о к. Характеристичне рівняння має вигляд
.
Коренями цього рівняння є .
Власні вектори:
для
для
Третій власний вектор знайдемо з умови
Одиничні вектори:
Перетворення координат:
Підставивши ці формули в лінійну частину рівняння поверхні другого порядку, одержимо
У нових координатах рівняння буде таким:
Паралельне перенесення за формулами приведе до рівняння