Реферат: Квадратичні форми їх приведення до діагонального вигляду Приведення рівняння кривої другого п
100
100
50
Р о з в ‘я з о к. Випишемо вектори валового випуску і кінцевого споживання та матрицю коефіцієнтів прямих затрат. Згідно формул (4.36) і (4.38),
Матриця задовольняє обидва критерії продуктивності. У випадку заданого збільшення кінцевого споживання новий вектор кінцевого продукту буде мати вигляд .
Потрібно знайти новий вектор валового випуску , що задовольняє співвідношенням балансу в припущенні, що матриця не зміниться. В такому випадку компоненти невідомого вектора знаходяться із системи рівнянь, яка в матричній формі має вигляд (4.37) або де матриця має вигляд
Звідси розраховується новий вектор як розв’язок рівняння
Знайдемо обернену матрицю (матрицю повних затрат ) (обчислення проводимо з точністю до третього знаку):
.
Зауважимо, що знайдена обернена матриця задовольняє першому критерію продуктивності матриці
Тепер вичислюємо вектор валового випуску
Таким чином, для того щоби забезпечити задане збільшення компонент вектора кінцевого продукту, необхідно збільшити відповідні валові випуски: добування і переробку вуглеводів на 52,2%, рівень енергетики – на 35,8% і випуск машинобудування – на 85% в порівнянні з початковими величинами, що приведені в табл.1.
4.5.2. Лінійна модель торгівлі
Процес взаємних закупок товарів аналізується з
використанням понять власного числа і власного вектора матриці. Припустимо, що бюджети країн витрачаються на покупку товарів. Розглянемо лінійну модель обміну , або модель міжнародної торгівлі.
Нехай доля бюджету яку а країна витрачає на закупку товарів у ої країни. Введемо матрицю коефіцієнтів
. (4.41)
Тоді, якщо весь бюджет витрачається тільки на закупки всередині країни і зовні неї (це можна трактувати як торговий бюджет), справедлива рівність
(4.42)
Матриця (4.41) із властивістю (4.42) називається структурною матрицею торгівлі. Для ої країни загальна виручка від внутрішньої і зовнішньої торгівлі виражається формулою
(4.43)
Умова збалансованої (бездефіцитної) торгівлі формулюється природнім чином: для кожної країни її бюджет повинен бути не більшим за виручку від торгівлі, тобто або
(4.44)
Покажемо, що в умові (4.44) можливий тільки знак рівності. Дійсно, додавши всі ці нерівності і згрупувавши доданки з величинами бюджетів одержимо