Реферат: Лекции по Математическому анализу
Доказательство:
Непрерывность сложной ф-ии.
Пусть:
| тогда сложная ф-ия - непрерывна в т. х0 . |
Доказательство:
А).
Б).
из А) и Б) следует:
Sl.
Непрерывность ф-ии на множестве.
Df. Ф-ия непрерывна на множестве Х , если она непрервна в каждой точке этого меожества.
Непрерывность обратной ф-ии:
Пусть - непрерывна и строго монотонна на промежуте Х , тогда справедливо:
-
*****
-
На промежутке Y существует непрерыная обратная ф-ия .
-
Характер монотонности обратной ф-ии такой же как и прямой.
Непрерывность элементарной ф-ии:
-
**********
-
Доказательство непрерывности основной элементарной ф-ии tg и ctg , следует из свойств непрерыности элементарных ф-ий.
-
Непрерывность log, arcsin, arccos, arstg следует из определения непрерывности обратной ф-ии.
Df Элементарные ф-ии, полученные из основных элементарных ф-ий с помощью арифметических операций, взятых в конечном числе,********
Характеристика точек разрыва ф-ии.
1. Точка устранимого разрыва.
D(f) т. х0 называется точкой устранимого разрыва ф-ии , если она не определена в этой точке, но имеет конечный предел.
Ф-ию можно сделать непрерывной в этой точке, доопределив ей значение в этой точке равным пределом.