Реферат: Лекции по Математическому анализу
-
Существует предел произведения ф-ий произведение пределов
-
Если предел знаменателя неравен 0 и B неравно 0 то
Следствие.
Из 1 и 2 следует, что константы можно выносить за знак предела
Бесконечно большие и их свойства
Опр. Ф-ия называется бесконечно большой в точке а, если ее предел в этой точке равен бесконечности.
Свойства
Пусть и - бесконечно большие ф-ии в точке а.
Ф-ия (х) имеет предел в точке а, отличный от 0
Ф-ия (х) и (ч) – бесконечно малые
Тогда справедливы следующие утверждения:
-
Произведение двух бесконечно больших ф-ий – бесконечно большая ф-ия.
-
Произведение бесконечно больших на ф-ию, имеющую отличный от нуля предел - бесконечно большая.
-
Ф-ия, обратная величине бесконечно большой – есть бесконечно малая, и наоборот.
Доказательство 2):
Доказательство 3):
Односторонние пределы в конечной точке и их связь с пределом в этой точке.