Реферат: Лекции по Математическому анализу
множестве E.
Не требуется, чтобы элементы E имели единственный прообраз во множестве X.
Д/з: Отображение, осуществляемых функций , называется взаимно однозначным отображением множества X на Y , если каждый элемент Y имеет единственный прообраз множества X. .
Д/з: Две функции равны, если:
-
.
-
совпадают законы соответствия.
Пример: 1) Равны ли функции и
Нет, так как .
2) и
Д/з: Две функции совпадают на множестве X1, с вкл. в пересечение областей определения функций , если для любой совпадает с .
Пример: и совпадают на множестве
Д/з: выписать определения чётных, нечётных, периодичных функций; их свойства и свойства симметрии графиков, сп. зад. функций с примерами.
Общие свойства функций.
1) Ограниченность. Сводится к ограниченности множества значений.
Функция ограничена, существует , что для
- огранич.
- неогранич.; при
2) Монотонность.
Д/з: Функция называется возрастающей на промежутке X, если для любого промежутку;
Убывающей, если
Замечание: если неравенства нестрогие, то говорят о неубывании в 1 случае и невозрастании (либо неизм., убыв.) во 2 случае.
Невозрастающие и неубывающие функции – монотонные. При строгом неравенстве строгомонотонные.
Пример:
Докажем, что она убывающая на любом промежутке.
Например:
Пусть