Реферат: Лекции по Математическому анализу

множестве E.

Не требуется, чтобы элементы E имели единственный прообраз во множестве X.

Д/з: Отображение, осуществляемых функций , называется взаимно однозначным отображением множества X на Y , если каждый элемент Y имеет единственный прообраз множества X. .

Д/з: Две функции равны, если:

  1. .

  2. совпадают законы соответствия.


Пример: 1) Равны ли функции и

Нет, так как .

2) и


Д/з: Две функции совпадают на множестве X1, с вкл. в пересечение областей определения функций , если для любой совпадает с .



Пример: и совпадают на множестве

Д/з: выписать определения чётных, нечётных, периодичных функций; их свойства и свойства симметрии графиков, сп. зад. функций с примерами.


Общие свойства функций.


1) Ограниченность. Сводится к ограниченности множества значений.

Функция ограничена, существует , что для

- огранич.

- неогранич.; при

2) Монотонность.

Д/з: Функция называется возрастающей на промежутке X, если для любого промежутку;

Убывающей, если

Замечание: если неравенства нестрогие, то говорят о неубывании в 1 случае и невозрастании (либо неизм., убыв.) во 2 случае.

Невозрастающие и неубывающие функции – монотонные. При строгом неравенстве строгомонотонные.

Пример:

Докажем, что она убывающая на любом промежутке.

Например:

Пусть

К-во Просмотров: 657
Бесплатно скачать Реферат: Лекции по Математическому анализу