Реферат: Лекции по Математическому анализу

Аксиома непрерывности вещественных чисел

Пусть , причем и : , тогда

Множеством вещественных чисел называется линейно упорядоченное непрерывное числовое поле.

Замечание: Аксиома непрерывности гарантирует, что каждому вещественному числу соответствует единственный тип числовой прямой и, наоборот, каждой числовой прямой соответствует единственное вещественное число.


Представление (модель) вещественного числа.


Можно доказать, что аксиомам удовлетворяют десятичные дроби, причем конечные (периодические) соответствуют рациональным числам, а бесконечные (непериодические) – иррациональным числам.

Т.к. бесконечные дроби нельзя использовать при вычислениях (не представимы в ЭВМ), то в реальных расчетах пользуются исключительно рациональными числами, но доказано, что любое вещественное число можно с любой степенью точности представить рациональным числом.


Свойство числового множества (следует из свойства упорядоченности).

Множество - ограничено сверху, если .

Число M – верхняя граница множества X.

Любое число - точка верхней границы, т.к.

Итак, верхних границ бесконечно много.

Наименьшая из всех верхних границ – верхняя грань множества Х (sup X – супремум икс)


Множество - ограничено снизу, если .

Число В – верхняя граница множества X.

Любое число - точка нижней границы, т.к.

Наибольшая из всех нижних границ – нижняя грань множества Х (inf X).


Множество называется ограниченным, если оно ограничено и снизу и сверху.


Теорема: Любое непустое, ограниченное сверху (снизу) множество, имеет верхнюю (нижнюю) грань.

Понятие абсолютной величины вещественного числа.

На упорядоченном числовом множестве введем понятие модуля (абсолютной величины) вещественного числа:





Свойства:

К-во Просмотров: 663
Бесплатно скачать Реферат: Лекции по Математическому анализу