Реферат: Лекции по Математическому анализу
Решение простейших неравенств с модулем.
Эквивалентность неравенств:
геометрический смысл:
Понятие окрестности в точке х0
окрестности в точке х0 (U (x0)) – симметричный интервал радиуса с центром в точке х0
Приколотой окрестности в точке х0 называется окрестности этой точки без самой х0
Открытые и замкнутые множества
Множество - называется открытым, если для любой точки этого множества найдется такая , которая целиком содержится в этом множестве.
, точки, обладающие этими свойствами, называются внутренними точками.
(a,b) – открытое множество:
Точка x X B любой окружности содержит – граничной точки множества X
Точки a и b – граничные [a;b] или (a;b).
Граничные точки могут и принадлежать, и не принадлежать множеству отрицательных. Множество своих границ не содержит.
Точка x называется предельной точкой X, если любое - окружности содержит хотя бы точек X.
(x-предельная для X) ( (x) ( x, x) (x, (x) )
точки a,b являются предельными как для отрезка, так и для интервала ( [a;b] и (a;b) )