Реферат: Лекции по Математическому анализу

Когда а – граничная точка D(f)- такая ситуация невозможна. В этом, случае вводится понятие одностороннего предела, в определении которого фигурирует левые и правые полуокрестности точки а


- левосторонний предел, если в левой полуокружности точки А, значения ф-ии лежат в -окрестности точки А


Аналогично дается определение правостороннего предела.

Теорема: Для того, чтобы в точке а существовал предел ф-ии, необходимо и достаточно существования и равенства левостороннего и правостороннего пределов

Доказательство:

  1. Необходимость:


  1. Достаточность:


Числовые последовательности


Задача, по которой каждому N числу, ставится в соответствие единственное вещественное число – называется числовой последовательностью.


Числовая последовательность – ф-ия натурального аргумента.

Обозначается:


Последовательность, множество значений которой состоит из одного числа – стационарная.


Так как числовая последовательность – не симметричное множество, то для него не существует понятия четности, нечетности, периодичности. Зато сохраняются свойства, связанные с упорядоченностью.

Свойства:

  1. Ограниченность.

    1. последовательность ограничена сверху, если

    2. последовательность ограничена снизу, если

    3. последовательность ограничена, если

  2. Монотонность.

    1. последовательность возрастает, если

    2. последовательность убывает, если

    3. последовательность не убывает, если

    4. последовательность не возрастает, если


Предел последовательности

Т.к. N числа имеет 1 т. бесконечности, то для числовой последовательности существует


К-во Просмотров: 655
Бесплатно скачать Реферат: Лекции по Математическому анализу