Реферат: Лекции по математике
, , .
С помощью этих матриц систему можно записать в виде .
,
.
1.2.3. Решение системы с помощью формул Крамера
Рассмотрим неоднородную систему n линейных уравнений с n неизвестными:
Теорема (теорема Крамера) . Если определитель матрицы , составленной из коэффициентов при неизвестных, отличен от нуля (), то система имеет единственное решение , которое можно найти по формулам Крамера:
, где - главный определитель, - j -й вспомогательный определитель, который получен из определителя заменой j -го столбца столбцом свободных членов.
Если главный определитель равен нулю и хотя бы один их вспомогательных определителей отличен от нуля, то система решений не имеет.
Если главный определитель и все вспомогательные определители равны нулю, то система имеет бесконечно много решений.
1.2.4. Решение СЛУ методом Гаусса.
Определение 1. Элементарными преобразованиями системы называются:
1) умножение уравнения на число, отличное от нуля;
2) прибавление к одному уравнению другого уравнения, умноженного на некоторое число, отличное от нуля.
3) перестановка двух уравнений;
4) отбрасывание уравнения 0=0.
Если получено уравнение 0=k , то система несовместна .
Метод Гаусса состоит в приведении системы к диагональному виду путем последовательного исключения неизвестных. Количество исключенных неизвестных равно числу линейно независимых уравнений . Переменная считается исключенной, если она содержится только в одном уравнении с коэффициентом 1.
Пример.
.
Метод Гаусса удобно применять к расширенной матрице системы, левую часть которой с помощью элементарных преобразований матрицы нужно привести к единичной матрице . Составим расширенную матрицу:
Получено решение системы х (3;2;1).
Вопросы для самопроверки.
1.Что представляет собой система линейных уравнений с п неизвестными?
2. Перечислите способы решения СЛУ.
3. Какие прикладные задачи можно решать матричным способом?
4. Назовите формулы Крамера.