Реферат: Математические методы оптимизации ресурсов

всех потребителей, не может превышать имеющегося у

него запаса, при этом часть запаса фуза может остаться невы-

везенной. Аналогично знак неравенства в Офаничениях для

заявок bj означает, что фуз, получаемый ./-м поставщиком,

должен быть не меньше заявки, но превышение заявки при

этом допускается.

Модель сбалансированной задачи является частным случаем

модели несбалансированной задачи. Несбалансированная модель

транспортной задачи является достаточно универсальной моделью,

описывающей множество задач распределения однородных

ресурсов — работ, назначений, материальных и трудовых ресурсов,

транспортировки фузов, распределения инвестиций, финансовых средств и др., которые можно успешно решить, если

знать ответы на вопросы:

• В каком смысле распределение средств должно быть наилучшим?

• Какой вклад дает каждый объект (субъект) в целевую

функцию?

Любая правильно составленная задача планирования имеет

бесчисленное множество допустимых решений. Какое же из них

выбрать? Мы уже знаем, чтобы ответить на этот вопрос, необходимо

прежде всего сформулировать задачу оптимизации, при

решении которой возможна лишь одна из двух взаимоисклю-

чаемых постановок: либо при заданных ресурсах максимизировать

получаемый результат, либо при заданном результате минимизировать

используемые ресурсы.

Если через Q обозначить ресурсы, через R —результат их применения,

то при заданных зависимостях результата и потребных

ресурсов от количества выпускаемой продукции R =f(,xj); Q =fixj)

две постановки задачи распределения ресурсов можно записать

следующим образом:

К-во Просмотров: 376
Бесплатно скачать Реферат: Математические методы оптимизации ресурсов