Реферат: Матричный анализ
Составим дробно-рациональную функцию:
и разложим ее на простейшие дроби.
Обозначим: . Умножим (*) на и получим
где – некоторая функция, не обращающаяся в бесконечность при .
Если в (**) положить , получим:
Для того, чтобы найти ak3 надо (**) продифференцировать дважды и т.д. Таким образом, коэффициент aki определяется однозначно.
После нахождения всех коэффициентов вернемся к (*), умножим на m(x) и получим интерполяционный многочлен r(x), т.е.
.
Пример: Найти f(A), если , где t – некоторый параметр,
.
Найдем минимальный многочлен матрицы А:
.
Проверим, определена ли функция на спектре матрицы А
Умножим (*) на (х-3)
при х=3
Þ
Умножим (*) на (х-5)
.
Таким образом, - интерполяционный многочлен.
Пример 2.
Если , то доказать, что