Реферат: Метод конечных разностей или метод сеток

x i =x 0 +ih x

y i =y 0 +jh y

h x = a/N ,

h y = b/M и т.к.

x 0 =y 0

то

x i =ih x , y i =jh y , i=0...N

j=0...M

Найдём разностные производные входящие в уравнение

2

D U = f

(т.е построим разностный аналог бигармонического уравнения).

Ux ij = U i+1j - U ij , Ux i-1j = U ij - U i-1j

h x h x

Uxx ij = U i-1j - 2U ij + U i+1j

h x

Рассмотрим Uxxxx ij как разность третьих производных :

Uxx i-1j - Uxx ij - Uxx ij - Uxx i+1j

Uxxxx ij = h x h x = U i-2j - 4U i-1j + 6U ij - 4U i+1j + U i+2j

4

h x h x

Анологично вычислим производную по y :

Uyyyy ij = U ij-2 - 4U ij-1 + 6U ij - 4U ij+1 +U ij+2

4

h y

Вычислим смешанную разностную производнуюUxxyy :

Uxx ij-1 - Uxx ij - Uxx ij - Uxx ij+1

(Uxx)yy ij = h y h y = Uxx ij-1 - 2Uxx ij +Uxx ij+1 =

2

hy hy

= U i-1j-1 - 2U ij-1 + U i+1j-1 - 2 U i-1j - 2U ij + U i+1j + U i-1j-1 - 2U ij+1 + U i+1j+1

2 2 2 2 2 2

h x h y h x h y h x h y

В силу того чтоD U = f

имеем:

U i-2j - 4U i-1j + 6U ij - 4U i+1j +U i+2j +

4

h x

+ 2 U i-1j-1 - 2U ij-1 + U i+1j-1 - 4 U i-1j - 2U ij +U i+1j + 2 U i-1j+1 -2U ij+1 + U i+1j+1 +

2 2 2 2 2 2

К-во Просмотров: 504
Бесплатно скачать Реферат: Метод конечных разностей или метод сеток