Реферат: Метод конечных разностей или метод сеток
Значительнаое число задач физики и техники приводят к дифференциальным уравнениям в частных прозводных (уравнения математической физики). Установившиеся процессы различной физической природы описываются уравнениями эллиптического типа.
Точные решения краевых задач для эллиптических уравнений удаётся получить лишь в частных случаях. Поэтому эти задачи решают в основном приближённо. Одним из наиболее универсальных и эффективных методов, получивших в настоящее время широкое распространение для приближённого решения уравнений математической физики, является метод конечных разностей или метод сеток.
Суть метода состоит в следующем. Область непрерывного изменения аргументов, заменяется дискретным множеством точек (узлов), которое называется сеткой или решёткой. Вместо функции непрерывного аргумента рассматриваются функции дискретного аргумента, определённые в узлах сетки и называемые сеточными функциями. Производные, входящие в дифференциальное уравнение и граничные условия, заменяются разностными производными, при этом краевая задача для дифференциального уравнения заменяется системой линейных или нелинейных алгебраических уравнений (сеточных или разностных уравнений). Такие системы часто называют разностными схемами. И эти схемы решаются относительно неизвестной сеточной функции.
Далее мы будем рассматривать применение итерационного метода Зейделя для вычисления неизвестной сеточной функции в краевой задаче с неоднородным бигармоническим уравнением.
ПОСТАНОВКА ЗАДАЧИ
Пусть у нас есть бигармоническое уравнение :
2
U = f
Заданное на области G={ (x,y) : 0<=x<=a, 0<=y<=b }. Пусть также заданы краевые условия на границе области G .
U = 0 Y
x=0 b
U xxx = 0
x=0
G
U x = 0
x=a
U xxx = 0 0 a X
x=a
U = 0 U = 0
y=0 y=b
U y = 0 U xx + U yy = 0
y=0 y=b y=b
Надо решить эту задачу численно.
Для решения будем использовать итерационный метод Зейделя для решения сеточных задач.
По нашей области G построим равномерные сетки W x и W y с шагами h x и h y соответственно .
W x ={ x(i)=i h x , i=0,1...N, h x N=a }
W y ={ y(j)=j h y , j=0,1...M, h y M=b }
Множество узлов U ij =(x(i),y(j)) имеющих координаты на плоскости х(i) ,y(j) называется сеткой в прямоугольнике G и обозначается :
W={ U ij =(ih x ,j h y ), i=0,1...N, j=0,1...M, h x N=a, h y M=b }
Сетка W очевидно состоит из точек пересечения прямых x=x(i) и y=y(j) .
Пусть задана сетка W .Множество всех сеточных функций заданных на W образует векторное пространство с определённом на нём сложениемфункций и умножением функции на число. На пространстве сеточных функций можно определитьразностные или сеточные операторы. 0ператор A преобразующий сеточную функцию U в сеточную функцию f=AU называется разностным или сеточным оператором. Множество узлов сетки используемое при написании разностного оператора в узле сетки называется шаблоном этого оператора.
Простейшим разностным оператором является оператор дифференцирования сеточной функции, который порождает разностные производные. Пусть W - сетка с шагом h введённая на R т.е.
W={X i =a+ih, i=0, + 1, + 2...}
Тогда разностные производные первого порядка для сеточной функции Y i =Y(X i ) , X i из W , определяется по формулам :
L 1 Y i = Y i - Y i-1 , L 2 Y i = L 1 Y i+1
h
и называются соответственно левой и правой производной. Используется так же центральная производная :
L 3 Y i =Y i+1 - Y i-1 = ( L 1 + L 2 )Y i
--> ЧИТАТЬ ПОЛНОСТЬЮ <--